PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 19 | 2 |

Tytuł artykułu

Ecomorphological diversity in the Patagonian assemblage of bats from Argentina

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Patagonian bats are represented by only insectivorous species, five vespertilionids and one molossid species. They constitute an interesting assemblage of temperate species that remains poorly studied. Here we uncover ecomorphological patterns of Patagonian bats using craniodental morphology, aerodynamic measurements, and external bodily characters. Multivariate analysis was applied to characterize morphometric variation of each dataset separately and in combination. We explored the segregation of species in morphospace, and the importance of phylogeny in the assemblage organization. We used a phylogenetic comparative method to evaluate historical effects on the morphofunctional structure. Our results indicated that the species of the Patagonian assemblage segregate in dimensions of morphospace by size and morphology, which would be related to prey selection (trophic differences) and habitat use (different styles of flight). We also demonstrated the impact of different cladogenetic events of the evolutionary history of species on the structuring of the Patagonian assemblage, with the successive addition of non-overlapping, well-defined morphofunctional types imported from other South American regions, and whit speciation events that resulted in species-level endemisms (Myotis chiloensis, Histiotus magellanicus, and Lasiurus varius).

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

2

Opis fizyczny

p.287-303,fig.,ref.

Twórcy

autor
  • Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Roca 780, 9200, Esquel, Chubut, Argentina
  • Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Fundacion Miguel Lillo, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucuman, Miguel Lillo 205, 4000, San Miguel de Tucu

Bibliografia

  • 1. Aguirre, L. F., A. Herrel, R. Van Damme, and E. Matthysen. 2002. Ecomorphological analysis of trophic niche partitioning in a tropical savanna bat community. Proceedings of the Royal Society of London, 269B: 1271–1278. Google Scholar
  • 2. Aldridge, H. D. J. N., and I. L. Rautenbach. 1987. Morphology, echolocation and resource partitioning in insectivorous bats. Journal of Animal Ecology, 56: 763–778. Google Scholar
  • 3. Amador, L. I., R. L. Moyers Arévalo, F. C. Almeida, S. A. Catalano, and N. P. Giannini. 2016. Bat systematics in the light of unconstrained analyses of a comprehensive molecular supermatrix. Journal of Mammalian Evolution, 23: 1–34. Google Scholar
  • 4. Ammerman, L. K., D. N. Lee, and T. M. Tipps. 2012. First molecular phylogenetic insights into the evolution of freetailed bats in the subfamily Molossinae (Molossidae, Chiroptera). Journal of Mammalogy, 93: 12–28. Google Scholar
  • 5. Barclay, M. R. M., and R. M. Brigham. 1991. Prey detection, dietary niche breadth, and body size in bats: why are aerial insectivorous bats so small? American Naturalist, 137: 693–703. Google Scholar
  • 6. Barquez, R. M. 2006. Orden Chiroptera Blumenbach, 1779. Pp. 56–86, in Mamíferos de Argentina: sistemática y distribución ( R. M. Barquez, M. M. Díaz, and R. A. Ojeda, eds.). Sociedad Argentina para el Estudio de los Mamíferos (SAREM), Tucumán, 356 pp. Google Scholar
  • 7. Barquez, R. M., and M. M. Díaz. 2009. Los Murciélagos de Argentina: Clave de Identificación. Programa de Conservación de los Murciélagos de Argentina (PCMA). Publicación Especial No 1, Tucumán, Argentina. Google Scholar
  • 8. Barquez, R. M., N. P. Giannini, and M. A. Mares. 1993. Guide to the bats of Argentina. Oklahoma Museum of Natural History, Norman, Oklahoma, viii + 119 pp. Google Scholar
  • 9. Barquez, R. M., M. A. Mares, and J. K. Braun. 1999. The bats of Argentina. Special Publications of the Museum of Texas Tech University, Lubbock, 275 pp. Google Scholar
  • 10. Bickham, J. W., J. C. Patton, D. A. Schlitter, I. L. Rautenbach, and R. L. Honeycutt. 2004. Molecular phylogenetics, karyotypic diversity, and partition of the genus Myotis (Chiroptera: Vespertilionidae). Molecular Phylogenetics and Evolution, 33: 333–338. Google Scholar
  • 11. Boyles, J. G., J. J. Storm, and V. Brack, Jr . 2008. Thermal ben e fits of clustering during hibernation: a field test of com peting hypotheses on Myotis sodalis. Functional Ecology, 22: 632–636. Google Scholar
  • 12. Burkart, R., N. O. Bárbaro, R. O. Sánchez, and D. A. Gómez. 1999. Eco-regiones de la Argentina. Administracion de Parques Nacionales, Programa Desarrollo Institu cional Ambiental, Buenos Aires, 42 pp. Google Scholar
  • 13. Canals, M., B. Grossi , J. Iriarte Díaz, and C. Veloso. 2005. Biomechanical and ecological relationships of wing morphology of eight Chilean bats. Revista Chilena de Historia Natural, 78: 215–227. Google Scholar
  • 14. Czaplewski, N. J., G. S. Morgan, and T. Naeher. 2003. Molossid bats from the late Tertiary of Florida with a review of the Tertiary Molossidae of North America. Acta Chiropterologica, 5: 61–74. Google Scholar
  • 15. Di Rienzo, J. A., F. Casanoves, M. G. Balzarini, L. Gonzales, M. Tablada, and C. W. Robledo. 2010. Info Stat. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Córdoba, Argentina. Google Scholar
  • 16. Fenton, M. B., and W. Bogdanowicz. 2002. Relationships between external morphology and foraging behavior: bats in the genus Myotis. Canadian Journal of Zoology, 80: 1004–1013. Google Scholar
  • 17. Findley, J. S., and H. Black. 1983. Morphological and dietary structuring of a Zambian insectivorous bat community. Ecology, 64: 625–630. Google Scholar
  • 18. Freeman, P. W. 1979. Specialized insectivory: beetle-eating and moth-eating molossid bats. Journal of Mammalogy, 60: 467–479. Google Scholar
  • 19. Freeman, P. W. 1981. Correspondence of food habits and morphology in insectivorous bats. Journal of Mammalogy, 62: 166–173. Google Scholar
  • 20. Fullard, J. H., C. Koehler, A. Surlykke, and N. L. McKenzie. 1991. Echolocation ecology and flight morphology of insectivorous bats (Chiroptera) in South-western Australia. Australian Journal of Zoology, 39: 427–438. Google Scholar
  • 21. Fuzessery, Z. M. 1996. Monaural and binaural spectral cues created by the external ears of the pallid bat. Hearing Research, 95: 1–17. Google Scholar
  • 22. Galaz, J. L., J. Yañez, A. Gantz, and D. R. Martínez. 2009. Orden Chiroptera. Pp. 67–89, in Mamíferos de Chile ( A. Muñoz -Pedrerso and J. Yañez, eds.). Centro de Estu dios AgraRíos y Ambientales, Valdivia, Chile, 572 pp. Google Scholar
  • 23. Giannini, N. P. 2003. Canoncial phylogenetic ordination. Systematic Biology, 52: 684–695. Google Scholar
  • 24. Giménez, A. L. 2010. Primeros registros de Histiotus macrotus (Chi roptera: Vespertilionidae) en la Provincia del Chubut, Argentina. Mastozoología Neotropical, 17: 375–380. Google Scholar
  • 25. Giménez, A. L., and N. P. Giannini. 2011. Morphofunctional and geographic segregation among species of lasiurine bats (Chiroptera: Vespertilionidae) from the South American South ern Cone. Mammalia, 76: 173–179. Google Scholar
  • 26. Giménez, A. L., and N. P. Giannini. 2016a. Morphofunctional segregation in molossid bat species (Chiroptera: Molossidae) from the South American Southern Cone. Hystrix, the Italian Journal of Mammalogy, 27: 1–11. Google Scholar
  • 27. Giménez, A. L., and N. P. Giannini. 2016b. The endemic Patagonian vespertilionid assemblage is a depauperate ecomorphological vicariant of species-rich neotropical assemblages. Current Zoology, 63: 495–505. Google Scholar
  • 28. Giménez, A. L., N. P. Giannini, M. I. Schiaffini Mi, and G. M. Martin. 2012. New records of the rare Histiotus magellanicus (Chiroptera, Vespertilionidae) and other bats from Central Patagonia, Argentina. Mastozoología Neotropical, 19: 213–224. Google Scholar
  • 29. Giménez, A. L., N. P. Giannini, M. I. Schiaffini Mi, and G. M. Martin. 2015. Geographic and potential distribution of a poorly known South American bat, Histiotus macrotus (Chiroptera: Vespertilionidae). Acta Chiropterologica, 17: 143–158. Google Scholar
  • 30. Glanz, W. E. 1982. The terrestrial mammal fauna of Barro Colorado Island: censuses and long-term changes. Pp. 239–251, in The ecology of a tropical forest ( E. G. Leigh, A. S. Rand, and D. M. Windsor, eds.). Smithsonian Institute Press, Washington, D.C., 568 pp. Google Scholar
  • 31. Glass, B. P. 1982. Seasonal movements of Mexican freetail bats Tadarida brasiliensis mexicana banded in the Great Plains. Southwestern Naturalist, 27: 127–133. Google Scholar
  • 32. Grinevitch, L., S. L. Holroyd, and R. M. R. Barclay. 1995. Sex differences in the use of daily torpor and foraging time by big brown bats (Eptesicus fuscus) during the reproductive season. Journal of Zoology (London), 235: 301–309. Google Scholar
  • 33. Herd, R. M., and M. B. Fenton. 1983. An electrophoretic, morphological, and ecological investigation of a putative hybrid zone between Myotis lucifugus and Myotis yumanensis (Chiroptera: Vespertilionidae). Canadian Journal of Zoology, 61: 2029–2050. Google Scholar
  • 34. Hoofer, S. R., and R. A. Van den Bussche. 2003. Molecular phylogenetics of the chiropteran family Vespertilionidae. Acta Chiropterologica, 5 (Supplement): 1–63. Google Scholar
  • 35. Iriarte Díaz, J., F. F. Novoa, and M. Canals. 2002. Biomechanic consequences of differences in wing morphology be tween Tadarida brasiliensis and Myotis chiloensis. Acta TheRíologica, 47: 193–200. Google Scholar
  • 36. Jones, G., and J. Rydell. 1994. Foraging strategy and predation risk as factors influencing emergence time in echolocating bats. Philosophical Transactions of the Royal Society of London, 346B: 445–455. Google Scholar
  • 37. Jones, K. E., A. Purvis, A. MacLarnon, O. R. P. Bininda Emonds, and N. B. Simmons. 2002. A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological Review, 77: 223–259. Google Scholar
  • 38. Kunz, T. H. 1973. Resource utilization: temporal and spatial components of bat activity in Central Iowa. Journal of Mammalogy, 54: 14–32. Google Scholar
  • 39. Kunz, T. H. 1988. Methods of assessing the availability of prey to insectivorous bats. Pp. 191–210, in Ecological and behavioral methods for the study of bats ( T. H. KUNZ, ed.). Smithsonian Institution Press, Washington, D.C., xxii + 533 pp. Google Scholar
  • 40. Kunz, T. H., and L. F. Lumsden. 2003. Ecology of cavity and foliage roosting bats. Pp. 3–90, in Bat ecology ( T. H. Kunz and M. B. Fenton, eds.). University of Chicago Press, Chicago, 779 pp. Google Scholar
  • 41. Lack, J. B., and R. A. Van Den Bussche. 2010. Identifying the confounding factors in resolving phylogenetic relationships in Vespertilionidae. Journal of Mammalogy, 91: 1435–1448. Google Scholar
  • 42. Lack, J. B., Z. P. Roehrs, C. E. Stanley, Jr ., M. Ruedi, and R. A. Van Den Bussche. 2010. Molecular phylogenetics of Myotis suggests familial-level divergence for the genus Cistugo (Chiroptera). Journal of Mammalogy, 91: 976–992. Google Scholar
  • 43. León, R. J. C., D. Bran, M. Collantes, J. M. Paruelo, and A. Soriano. 1998. Grandes unidades de vegetación de la Pata gonia extra andina. Ecología Austral, 8: 125–144. Google Scholar
  • 44. Lim, B. K. 2009. Review of the origins and biogegraphy of bats in South America. Chiroptera Neotropical, 15: 391–410. Google Scholar
  • 45. Mancini, M. V., M. M. Paez, A. R. Prieto, S. Stutz, M. Tonello, and I. Vilanova. 2005. Mid-Holocene climatic variability reconstruction from pollen records (32°–52°S, Argentina). Quaternary International, 132: 47–59. Google Scholar
  • 46. McNab, B. K. 1982. Evolutionary alternatives in the physiological ecology of bats. Pp. 151–200, in Ecology of bats ( T. H. Kunz, ed.). Springer, New York, 425 pp. Google Scholar
  • 47. Meachen-Samuels, J., and B. Van Valkenburgh. 2009. Cranio dental indicators of prey size preference in the Felidae. Biological Journal of the Linnean Society, 96: 784–799. Google Scholar
  • 48. Morales, M. M., and N. P. Giannini. 2010. Morphological patternas in Neotropical felids: species co-existence and historical assembly. Biological Journal of the Linnean Society, 100: 711–724. Google Scholar
  • 49. Morales, M. M., and N. P. Giannini. 2013. Ecomorphology of the African felid ensemble: the role of the skull and postcranium in determining species segregation and assembling history. Journal of Evolutionary Biology, 26: 980–992. Google Scholar
  • 50. Morales, M. M., and N. P. Giannini. 2014. Pleistocene extinctions and the perceived morphofunctional structure of the Neo tropical felid ensemble. Journal of Mammalian Evolution, 21: 395–405. Google Scholar
  • 51. Norberg, M. R., A. L. Peracchi, and L. R. Monteiro. 2009. Morphological correlates of bite force and diet in the skull and mandible of phyllostomid bats. Functional Ecology, 23: 715–723. Google Scholar
  • 52. Norberg, U. M. 1994. Wing design, flight performance, and habitat use in bats. Pp. 205–239, in Ecological morphology: integrative organismal biology ( P. C. Wainwright and S. M. Reilly, eds.). University of Chicago Press, Chicago, 376 pp. Google Scholar
  • 53. Norberg, U. M., and J. M. V. Rayner. 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance. Foraging strategy and echolocation. Philosophical Transactions of the Royal Society of London, 316B: 335–427. Google Scholar
  • 54. Obrist, M. K., M. B. Fenton, J. L. Eger, and P. A. Schlegel. 1993. What ears do for bats: a comparative study of pinna sound pressure transformation in Chiroptera. Journal of Experimental Biology, 180: 119–152. Google Scholar
  • 55. Olson, D. M., E. Dinerstein, E. D. Wikramanayake, N. D. Burgess, G. V. N. Powell, E. C. Underwood, J. A. D'Amico, I. Itoua, H. E. Strand, J. C. Morrison , et al. 2001. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience, 51: 933–938. Google Scholar
  • 56. Paruelo, J. M., A. Beltrán, E. Jobbágy, O. E. Sala, and R. A. Golluscio. 1998. The climate of Patagonia: general patterns and controls on biotic processes. Ecología Austral, 8: 85–101. Google Scholar
  • 57. Pearson, O. P., and A. K. Pearson. 1989. Reproduction of bats in Southern Argentina. Pp. 549–566, in Advances in Neotropical mammalogy ( K. H. Redford and J. F. Eisenberg, eds.). University of Florida, Gainesville, FL, 614 pp. Google Scholar
  • 58. Racey, P. A., and J. R. Speakman. 1987. The energetic of pregnancy and lactation in heterothermic bats. Symposia of the Zoological Society of London, 57: 107–125. Google Scholar
  • 59. Ranivo, J., and S. M. Goodman. 2007. Patterns of ecomorphological variation in the bats of western Madagascar: comparisons among and between communities along a latitudinal gradient. Mammalian Biology, 72: 1–13. Google Scholar
  • 60. Rasband, W. 2012. ImageJ 1.46r. National Institutes of Health, Bethesda, Maryland, USA. Available at http://www.imageJ.nih.gov/ij . Google Scholar
  • 61. Roehrs, Z. P., J. B. Lack, R. A. Van Den Bussche. 2010. Tribal phylogenetic relationships within Vespertilioninae (Chiroptera: Vespertilionidae) based on mitochondrial and nuclear sequence data. Journal of Mammalogy, 91: 1073–1092. Google Scholar
  • 62. Saunders, M. B., and R. M. R. Barclay. 1992. Ecomorphology of insectivorous bats: a test of predictions using two morphologically similar species. Ecology, 73: 1335–1345. Google Scholar
  • 63. Schlichter, T., and P. Laclau. 1998. Ecotono estepa-bosque y plantaciones forestales en la Patagonia Norte. Ecología Austral, 8: 285–296. Google Scholar
  • 64. Schnitzler, H.-U., and E. K. V. Kalko. 1998. How echolocating bats search and find food. Pp. 183–196, in Bat biology and conservation ( T. H. Kunz and P. A. Racey, eds.). Smithsonian Institution Press, Washington, D.C., xiv + 365 pp. Google Scholar
  • 65. Simmons, N. B. 2000. Bat phylogeny: an evolutionary context for comparative studies. Pp. 9–58, in Ontogeny, functional ecology, and evolution of bats ( R. A. Adams and S. C. Pedersen, eds.). Cambridge University Press, New York, 408 pp. Google Scholar
  • 66. Simmons, N. B., and R. S. Voss. 1998. The mammals of Paracou, French Guiana, a Neotropical lowland rainforest fauna. Part 1, Bats. Bulletin of the American Museum of Natural History, 237: 1–215. Google Scholar
  • 67. Speakman, J. R., and D. W. Thomas. 2003. Physiological ecology and energetics of bats. Pp. 430–490, in Bat ecology ( T. H. Kunz and M. B. Fenton, eds.). University of Chicago Press, Chicago, IL, 779 pp. Google Scholar
  • 68. Stadelmann, B., L. K. Lin, T. H. Kunz, and M. Ruedi. 2007. Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Molecular Phylogenetics and Evolution, 43: 32–48. Google Scholar
  • 69. Swartz, S. M., P. W. Freeman, and E. F. Stockwell. 2003. Ecomorphology of bats: comparative and experimental approaches relating structural design to ecology. Pp. 257–292, in Bat Ecology ( T. H. Kunz, and M. B. Fenton, eds.). The University of Chicago Press, Chicago, Chicago, 779 pp. Google Scholar
  • 70. Ter Braak, C. F. J., and P. Šmilauer. 1998. CANOCO reference manual and user's guide to CANOCO for Windows: Software for canonical community ordination, version 4.0. Microcomputer Power, New York. Google Scholar
  • 71. Villa-R, B., and E. L. Cockrum. 1962. Migration in the guano bat Tadarida brasiliensis mexicana (Saussure). Journal of Mammalogy, 43: 43–64. Google Scholar
  • 72. Wainwright, P. C. 1991. Ecomorphology: experimental functional anatomy for ecological problems. The American Zoolog ist, 31: 680–693. Google Scholar
  • 73. Wainwright, P. C. 1994. Functional morphology as a tool in ecological research. Pp. 42–59, in Ecological morphology: integrative organismal biology ( P. C. Wainwright and S. M. Reilly, eds.). University of Chicago Press, Chicago, 376 pp. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-7243f843-2ec8-4931-a5e8-43e7329c68cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.