PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 11 |

Tytuł artykułu

The role of putrescine against the long terminal repeat (LTR) retrotransposon polymorphisms induced by salinity stress in Triticum aestivum

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study aimed to research the impact of putrescine against the long terminal repeat (LTR) retrotransposon polymorphisms (Nikita-E2647, Sukkula, Stowaway, WLTR2105 and 50LTR) induced by salinity stress in Triticum aestivum using inter-retrotransposon amplified polymorphism (IRAP) assay. The results showed that the LTR retrotransposon polymorphisms can be induced by all treated sodium chloride (NaCl) doses (0, 50, 100, 200 and 300 mMNaCl).On the other hand, theLTRretrotransposons polymorphisms were decreased effectively by treatment with putrescine (0, 0.01, 0.1 and 1 mM) together with NaCl. These results suggest that putrescine could effectively inhibit salt-induced LTR retrotransposon polymorphisms, and putrescine positively contributed to salt stress tolerance.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

11

Opis fizyczny

Article: 251 [9 p.], fig.,ref.

Twórcy

autor
  • Department of Biology, Faculty of Science, Ataturk University, Erzurum, 25240, Turkey
autor
  • Department of Biology, Faculty of Science, Ataturk University, Erzurum, 25240, Turkey
autor
  • Department of Biology, Faculty of Science, Ataturk University, Erzurum, 25240, Turkey
autor
  • Department of Field Crops, Faculty of Agriculture, Ataturk University, Erzurum, 25240, Turkey
  • Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, 25240, Turkey

Bibliografia

  • Aalami A, Safiyar S, Mandoulakani BA (2012) R-RAP: a retrotransposon-based DNA fingerprinting technique in plants. POJ 5:359–364
  • Alzohairy AM, Yousef MA, Edris S, Kerti B, Gyulai G, Bahieldin A (2012) Detection of LTR retrotransposons Reactivation induced by in vitro Environmental Stresses in Barley (Hordeum vulgare) via RT-Qpcr. Life Sci J 9:5019–5026
  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399
  • Baumel A, Ainouche M, Kalendar R, Schulman AH (2002) Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C.E. Hubbard (Poaceae).Mol Biol Evol 19:1218–1227
  • Bayram E, Yilmaz S, Hamat-Mecbur H, Kartal-Alacam G, Gozukirmizi N (2012) Nikita retrotransposon movements in callus cultures of barley (Hordeum vulgare L.). POJ 5:211–215
  • Bento M, Pereira HS, Rocheta M, Gustafson P, Viegas W, Silva M (2008) Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale. PLoS One 3:e1402
  • Bichler J, Herrmann RG (1990) Analysis of the promotors of the single-copy genes for plastocyanin and subunit 6 of the chloroplast ATP synthase from spinach. Eur J Biochem 190:415–426
  • Bors W, Langebartels C, Michel C, Sandermann H (1989) Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28:1589–1595
  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stres. Proc Natl Acad Sci USA 10:9909–9914
  • Carvalho A, Guedes-Pinto H, Lima-Brito JE (2012) Genetic diversity in old portuguese durum wheat cultivars assessed by retrotransposon-based markers. Plant Mol Biol Rep 30:578–589
  • Cho D, Shin D, Jeon WB, Kwak JM (2009) ROS-mediated ABA signaling. J Plant Biol 52:102–113
  • D’Agostino L, Di-Pietro M, Di-Luccia A (2005) Nuclear aggregates of polyamines are supramolecular structures that play a crucial role in genomic DNA protection and conformation. FEBS J 272:3777–3787
  • Erdal S (2011) Alleviation of salt stress in wheat seedlings by mammalian sex hormones. J Sci Food Agric 92:1411–1416
  • Erturk FA, Ay H, Nardemir G, Agar G (2013) Molecular determination of genotoxic effects of cobalt and nickel on maize (Zea mays L.) by RAPD and protein analyses. Toxicol Ind Health 29:662–671
  • Erturk FA, Agar G, Arslan E, Nardemir G, Aydin M, Taspinar MS (2014) Effects of lead sulfate on genetic and epigenetic changes and endogenous hormone levels in corn (Zea -mays L.). Pol J Environ Stud 23:1925–1932
  • Finatto T, Costa de Oliveira A, Chaparro C et al (2015) Abiotic stress and genome dynamics: specific genes and transposable elements response to iron excess in rice. Rice 8:13
  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121
  • Gbadegesin MA, Wills MA, Beeching JR (2008) Diversity of LTRretrotransposons and enhancer/suppressor mutator-like transposons in cassava (Manihot esculenta Crantz). Mol Genet Genomics 280:305–317
  • Ge CL, Yang XY, Liu XN, Sun JH, Luo SS, Wang ZG (2002) Effects of heavy metal on the DNA methylation level in rice and wheat. J Plant Physiol Mol Biol 28:363–368
  • Glenn EP, Brown JJ, Bumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sc 18:227–255
  • Grandbastien MA (2004) Stress activation and genomic impact of plant retrotransposons. J Soc Biol 198:425–432
  • Grandbastien MA (2014) LTR retrotransposons, handy hitchhikers of plant regulation and stress response. Biochim Biophys Acta 1849:403–416
  • Grandbastien MA, Lucas H, More JB, Mhiri C, Vernhettes S, Casacuberta JM (1997) The expression of the tobacco Tnt1 is linked to the plant defence responses. Genetica 100:241–252
  • Grandbastien MA, Audeon CE, Bonnivard JM, Casacuberta B, Chalhoub AP, Costa APP (2005) Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res 110:229–241
  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:465–471
  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–497
  • Hayashi K, Yoshida H (2009) Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J 57:413–425
  • Hirochika H, Otsuki H, Yoshikawa M, Otsuki Y, Sugimoto K, Takeda S (1996) Autonomous transposition of the tobacco retrotransposon Tto1 in rice. Plant Cell 8:725–734
  • Khan AU, Di-Mascio P, Medeiros MHG, Wilson T (1992) Spermine and spermidine protection of plasmid DNA against single-strand breaks induced by singlet oxygen. Proc Natl Acad Sci USA 89:11428–11430
  • Kumar A, Bennetzen JL (2000) Retrotransposons: central players in the structure, evolution and function of plant genomes. Trends Plant Sci 5:509–510
  • Liu W, Yang YS, Zhou Q, Xie L, Li P, Sun T (2007) Impact assessment of cadmium contamination on rice (Oryza sativa L.) seedlings at molecular and population levels using multiple biomarkers. Chemosphere 67:1155–1163
  • Lu G, Wu X, Chen B, Gao G, Xu K (2007) Evaluation of genetic and epigenetic modification in rapeseed (Brassica napus) induced by salt stres. J Integr Plant Biol 49:1599–1607
  • Miyomoto S, Kashiwagi K, Watanabe S, Igarashi K (1993) Estimation of polyamine distribution and polyamine stimulation of protein synthesis in Escherichia coli. Arch Biochem Biophys 300:63–68
  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24
  • Munns R, Termaat A (1986) Whole-plant responses to salinity. Aust J Plant Physiol 13:143–160
  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742
  • Pastuglia M, Roby D, Dumas C, Cockagi JM (1997) Rapid induction by Wsunding and bacterial infection of an S gene family receptorlike kinase gene in Brassica oleracea. Plant Cell 9:49–60
  • Perez-Amador MA, Leon J, Green PJ, Carbonell J (2002) Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in arabidopsis. Plant Physiol 130:1454–1463
  • Picault N, Chaparro C, Piegu B, Stenger W, Formey D, Llauro C, Descombin J, Sabot F, Lasserre E, Meynard D, Guiderdoni E, Panaud O (2009) Identification of an active LTR retrotransposon in rice. Plant J 58:754–765
  • Piterková J, Luhová L, Zajoncová L, Sebela M, Petřivalský M (2012) Modulation of polyamine catabolism in pea seedlings by calcium during salinity stress. Plant Prot Sci 2:53–64
  • Pouteau S, Grandbastien MA, Boccara M (1994) Microbial elicitors of plant defence responses activate transcription of a retrotransposon. Plant J 5:535–542
  • Ross C, Shen QJ (2006) Computational prediction and experimental veriWcation of HVA1-like abscisic acid responsive promoters in rice (Oryza sativa). Plant Mol Biol 62:233–246
  • Ruiz-Herrera J, Ruiz-Medrano R, Dominguez A (1995) Selective inhibition of cytosine-DNA methylases by polyamines. FEBS Lett 357:192–196
  • Salazar M, González E, Casaretto JA, Casacuberta JM, Ruiz-Lara S (2007) The promoter of the TLC1.1 retrotransposon from Solanum chilense is activated by multiple stress-related signaling molecules. Plant Cell Rep 26:1861–1868
  • Shevyakova NI, Shorina MV, Rakitin VY, Stetsenko LA, Kuznetsov VIV (2004) Ethylene-induced production of cadaverine is mediated by protein phosphorylation and dephosphorylation. Doklady Biol Sci 395:127–129
  • Si Y, Zhang C, Meng S, Dane F (2009) Gene expression changes in response to drought stress in Citrullus colocynthis. Plant Cell Rep 28:997–1009
  • Slotkin KH, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285
  • Steward N, Kusano T, Sano H (2000) Express of ZmMET1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells, but also with altered DNA methylation status in cold-stressed quiescent cells. Nucleic Acids Res 28:3250–3259
  • Sun Y, Xu CH, Wang MQ, Zhi DY, Xia GM (2014) Genomic changes at the early stage of somatic hybridization. Genet Mol Res 13:1938–1948
  • Takeda S, Sugimoto K, Otsuki H, Hirochika H (1999) A 13-pb cisregulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant J 18:383–393
  • Tan M (2010) Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol Biochem 48:21–26
  • Tang M, Liu X, Deng H, Shen S (2011) Over-expression of JcDREB, a putative AP2/EREBP domain-contaning transcription factor gene in woody biodiesel plant Jatropha curcas, enhances salt and freezing tolerance in transgenic Arabidopsis thaliana. Plant Sci 181:623–631
  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138
  • Voronova A, Belevich V, Jansons A, Rungis D (2014) Stress-induced transcriptional activation of retrotransposon-like sequences in the Scots pine (Pinus sylvestris L.) genome. Tree Genet Genomes 10:937–951
  • White SE, Habera LF, Wessler SR (1994) Retrotransposons in the Xanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. PNAS 91:11792–11796
  • Woodrow P, Pontecorvo G, Fantaccione S, Fuggi A, Kafantaris I, Carillo P (2010) Polymorphism of a new Ty1-copia retrotransposon in durum wheat under salt and light stresses. Theor Appl Genet 121:311–322
  • Ye B, Müller HH, Zhang J, Gressel J (1997) Constitutively elevated levels of putrescine and putrescine generating enzymes correlated with oxidant stress resistance in Conyza bonariensis and wheat. Plant Physiol 15:1443–1451
  • Yeo A (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot 49:915–929
  • Zhong L, Xu YH, Wang JB (2009) DNA-methylation changes induced by salt stress in wheat Triticum aestivum. Afr J Biotechnol 8:6201–6207
  • Zhong L, Xu YH, Wang JB (2010) The effect of 5-azacytidine on wheat seedlings responses to NaCl stres. Biol Plantarum 54:753–756

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-72282bb9-d350-4a80-a6bf-3326a9c2ee48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.