PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 70 | 3 |

Tytuł artykułu

Differential effects of N-1-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) on auxin control of swelling of the shoots of Bryophyllum calycinum Salisb.

Autorzy

Treść / Zawartość

Warianty tytułu

PL
Zróżnicowany wpływ kwasu 1-N-naftyloftalamowego (NPA) i kwasu 2,3,5-trójjodobenzoesowego (TIBA) w relacji do auksyny na grubienie pędu Bryophyllum calycinum

Języki publikacji

EN

Abstrakty

EN
The effects of N-1-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) on the swelling of the stem in intact and decapitated plants of Bryophyllum calycinum in relation to the interaction with auxin, indole-3-acetic acid (IAA), are described. NPA induced conspicuous local internode swelling only in the area of its application in intact plants and in the decapitated internode in the case of simultaneous application of IAA on the top of the internode. By contrast, TIBA applied to an internode of intact plants induced swelling along the entire internode above the treatment area, and similar results were obtained in the decapitated internode when TIBA was applied in the middle of the internode and IAA was applied onto the top of the internode. The differential effect of NPA and TIBA on stem swelling in B. calycinum is discussed in relation to their differential mode of action on auxin transport.
PL
W pracy przedstawiono zróżnicowany wpływ kwasu 1-N-naftyloftalamowego (NPA) i kwasu 2,3,5-trójjodobenzoesowego (TIBA) na grubienie łodygi w całych i dekapitowanych roślinach B. calycinum w relacji do interakcji z auksyną, kwasem indolilo-3-octowym (IAA). NPA silnie indukował miejscowe grubienie łodygi tylko w miejscu jego traktowania w roślinach całych i w dekapitowanych międzywęźlach w przypadku jednoczesnego podania IAA na wierzchołek międzywęźla. Z drugiej strony, TIBA podany na środek międzywęźla całych roślin indukował grubienie łodygi wzdłuż całego międzywęźla powyżej miejsca traktowania i podobne wyniki otrzymano w międzywęźlach dekapitowanych kiedy TIBA podano na środek międzywęźla i jednocześnie IAA nałożono na wierzchołek dekapitowanego międzywęźla. Zróżnicowany wpływ NPA i TIBA na grubienie łodygi B. calycinum jest dyskutowany w relacji z ich zróżnicowanym mechanizmem działania na transport auksyny.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

70

Numer

3

Opis fizyczny

Article 1723 [8p.], fig.,ref.

Twórcy

Bibliografia

  • 1. Roberts HS, Friml J. Auxin and other signals on the move in plants. Nat Chem Biol. 2009;5:325–332. https://doi.org/10.1038/nchembio.170
  • 2. Murday GK, Murphy AS. An emerging model of auxin transport regulation. Plant Cell. 2002;14:293–299. https://doi.org/10.1105/tpc.140230
  • 3. Ueda J, Miyamoto K, Uheda E, Oka M. Auxin transport and graviresponse in plants: relevance to ABC proteins. Biol Sci Space. 2011;25:69–75. http://doi.org/10.2187/bss.25.69
  • 4. Ueda J, Miyamoto K, Uheda E, Oka M, Yano S, Higashibata A, et al. Close relationships between polar auxin transport and graviresponse in plants. Plant Biol. 2014;16(1 suppl):43–49. http://doi.org/10.1111/plb.12101
  • 5. Adamowski M, Friml J. PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell. 2015;27:20–32. https://doi.org/10.1105/tpc.114.134874
  • 6. Depta H, Eisele KH, Hertel R. Specific inhibitors of auxin transport: action on tissue segments and in vitro binding to membranes from maize coleoptiles. Plant Sci Lett. 1983;31:181–192. https://doi.org/10.1016/0304-4211(83)90055-X
  • 7. Muday GK, Brunn SA, Haworth P, Subramanian M. Evidence for a single naphthylphthalamic acid binding site on the zucchini plasma membrane. Plant Physiol. 1993;103:449–546. https://doi.org/10.1104/pp.103.2.449
  • 8. Ruegger M, Dewey E, Hobbie L, Brown D, Bernasconi P, Turner J, et al. Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar transport and diverse morphological defects. Plant Cell. 1997;9:745– 757. https://doi.org/10.1105/tpc.9.5.745
  • 9. Galston AW. The effect of 2,4,5-triiodobenzoic acid on the growth and flowering of soybeans. Am J Bot. 1948;34:356–360. https://doi.org/10.2307/2437695
  • 10. Thimann KV, Bonner WD Jr. The action of tri-iodobenzoic acid on growth. Plant Physiol. 1948;23:158–161. https://doi.org/10.1104/pp.23.1.158
  • 11. Niedergang-Kamien E, Leopold AC. Inhibitor of polar auxin transport. Physiol Plant. 1957;10:29–38. https://doi.org/10.1111/j.1399-3054.1957.tb07607.x
  • 12. Morris DA, Kadir GO, Barry AJ. Auxin transport in intact pea seedlings (Pisum sativum L.): the inhibition of transport by 2,3,5-triiodobenzoic acid. Planta. 1973;110:173–182. https://doi.org/10.1007/BF00384840
  • 13. Tognoni F, Alp A. Morphactins, auxin transport and apical dominance in Pisum sativum. Ber Dtsch Bot Ges. 1969;3:53–60.
  • 14. Parups EV. Effect of morphactin on the gravimorphism and the uptake, translocation and spatial distribution of indole-3yl-acetic acid in plant tissues in relation to light and gravity. Plant Physiol. 1970;23:1176–1186. https://doi.org/10.1111/j.1399-3054.1970.tb08895.x
  • 15. Schneider G. Morphactins: physiology and performance. Annu Rev Plant Physiol. 1970;21:499–536. https://doi.org/10.1146/annurev.pp.21.060170.002435
  • 16. Naqvi S. The effect of morphactin on the kinetics of indole-3-acetic acid-2-14C transport in Zea mays L. coleoptile segments. J Exp Bot. 1972;23:763–767. https://doi.org/10.1093/jxb/23.3.763
  • 17. Bridges IG, Wilkins MB. Effects of morphactin on indole-3-acetic acid transport, growth and geotropic response in cereal coleoptiles. J Exp Bot. 1973;24:711–723. https://doi.org/10.1093/jxb/24.4.711
  • 18. Kaldewey H, Ginkel U, Lehmann I, Seiwert R. Transport and immobilization of indoleacetic acid as affected by morphactins. I. Time course of auxin transport in sections excised from different hypocotyl regions of light-grown seedlings of Citrullus edulis. Proceedings of the Research Institute of Pomology, Skierniewice, Poland, Ser. E. 1973;3:215–226.
  • 19. Gagianas AA, Berg AR. The effect of morphactin (methyl 2-chloro-9-hydroxyfluorene-9-carboxylate) on basipetal transport of indole-3yl-acetic acid in hypocotyl sections of Phaseolus vulgaris L. Ann Bot. 1977;41:1135–1148. https://doi.org/10.1093/oxfordjournals.aob.a085404
  • 20. Katekar GF, Giessler AE. Auxin transport inhibitors. IV. Evidence of a common mode of action for a proposed class of auxin transport inhibitors: the phytotropins. Plant Physiol. 1980;66:1561–1569. https://doi.org/10.1104/pp.66.6.1190
  • 21. Krelle E, Libbert E. Inhibition of the polar auxin transport by a morphactin. Planta. 1968;80:317–320. https://doi.org/10.1007/BF00392401
  • 22. Tamimi S, Firn RD. The basipetal auxin transport system and the control of cell elongation in hypocotyls. J Exp Bot. 1985;36:955–962. https://doi.org/10.1093/jxb/36.6.955
  • 23. Saniewski M, Góraj J, Węgrzynowicz-Lesiak E, Miyamoto K, Ueda J. Differential effect of auxin transport inhibitors on rooting in some Crassulaceae species. Acta Agrobot. 2014;67:85–92. https://doi.org/10.5586/aa.2014.028
  • 24. Fujita H, Syōno K. Genetic analysis of the effect of polar transport inhibitors on root growth in Arabidopsis thaliana. Plant Cell Physiol. 1996;37:1094–1101. https://doi.org/10.1093/oxfordjournals.pcp.a029059
  • 25. Lomax TL, Muday GK, Rubery PH. Auxin transport. In: Davis PJ, editor. Plant hormones. Dordrecht: Kluwer Academic Publishers; 1995. p. 509–530. https://doi.org/10.1007/978-94-011-0473-9_24
  • 26. Thein M, Michalke W. Bisulfite interacts with binding sites of the auxintransport inhibitor N-1-naphthylphthalamic acid. Planta. 1988;176:343–350. https://doi.org/10.1007/BF00395414
  • 27. Gaither DH, Abeles FB. Sites of auxin action. Plant Physiol. 1975;56:404–409. https://doi.org/10.1104/pp.56.3.404
  • 28. Thomson KS, Hertel R, Müller S, Tavares JE. 1-N-naphthylphthalamic acid and 2,3,5-triiodobezoic acid. In vitro binding to particulate cell fractions and action on auxin transport in corn coleoptiles. Planta. 1973;109:337–352. https://doi.org/10.1007/BF00387102
  • 29. Jablanovic M, Nooden LD. Changes in compatible IAA binding in relation to development in pea seedlings. Plant Cell Physiol. 1974;15:687–692. https://doi.org/10.1093/oxfordjournals.pcp.a075054
  • 30. Michalke W, Katekar GF, Geissler AE. Phytotropin-binding sites and auxin transport in Cucurbita pepo: evidence for two recognition sites. Planta. 1992;187:254–260. https://doi.org/10.1007/BF00201948
  • 31. Neumann PM, Doss RP, Sachs RM. A new laboratory method used for investigating the uptake, translocation and metabolism of bark banded morphactin by trees. Physiol Plant. 1977;39:248–251. https://doi.org/10.1111/j.1399-3054.1977.tb04046.x
  • 32. Sundberg B, Tuominen H, Little CHA. Effects of the indole-3-acetic acid (IAA) transport inhibitors N-1-naphthylphthalamic acid and morphactin endogenous IAA dynamics in relation to compression wood formation in 1-year old Pinus sylvestris (L.) shoots. Plant Physiol. 1994;106:469–467. https://doi.org/10.1104/pp.106.2.469
  • 33. Kulka RG. Hormonal control of root development on epiphyllous plantlets of Bryophyllum (Kalanchoë) marnierianum; role of auxin and ethylene. J Exp Bot. 2008;59:2361–2370. https://doi.org/10.1093/jxb/ern106
  • 34. Abraham-Juárez MJ, Cárdenas RH, Villa JNS, O’Connor D, Sluis A, Hake S, et al. Functionally different PIN proteins control auxin flux during bulbil development in Agave tequilana. J Exp Bot. 2015;66:3893–3905. https://doi.org/10.1093/jxb/erv191

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7222eab1-f3df-4256-bdfa-7e925673b9cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.