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S u m m a r y . In the article in the frames of the semi-
phenomenological approach there have been formulated  
the main requirements to the mathematical model of 
movement of the mortar and its interaction with the 
filler in the planar case, when the external variable force 
field of the excitation  has a turbulent component. It is 
given the strict interpretation of the influence of the 
parameters of the model under investigation on the 
process of vibrorheology of cement concrete solutions 
and was formulated the criterion of its effectiveness.  
K e y  w o r d s : vibrorheology of cement concrete 
solutions, turbulence, swirling, tensors of the first and 
second viscosity.  

INTRODUCTION  

The modern mathematical constructions 
as according to the theory of vibrorheology of 
cement concrete solutions [2-
5, 7, 8, 11, 15, 17-20] are based on the one and 
the same unique approach the initial position 
of which is the consideration of some concrete 
form with fixed geometry filled with multi 
component media in the type of visco-plastic 
fluid with the filler which is under the 
conditions of periodic vibro excitation within 
the certain period of time [0, T]. The 
description of the movement of working 
material is a contact problem taking into 
account the boundary conditions [12, 13]. It is 

easy to see that the exact solution of the 
problem of compression of cement solution 
provides its deterministic nature, which is a 
consequence of the complete task of the 
behavior of working environment of shuttering 
form on its boundary. But it is not possible for 
even the simplest geometric configuration of 
the border. Thus, the creation of the theory of 
the vibrorheology in a separately taken 
shuttering form does not lead to the 
description of the general laws of interaction 
of cement solution with the filler which would 
bring the research process to certain 
technological solutions and recommendations, 
including the ability to control the compaction 
process based on the combination of the values 
of the constructive parameters of the problem. 
We cannot count on a clear prospect of 
application research based on effective 
technology without a new consequent 
systematic approach to the theory 
vibrorheology. This situation underlines the 
chronic weakness of the previously mentioned 
concept of the vibrorheology (and in some 
cases the use of research schemes which 
unacceptable), improving the design of the 
shuttering form when done as the result of 
analysis of numerous experimental data by the 
method of trials and errors without stringent 
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performance criteria and in the absence of 
theoretical results of a general character. 

STATEMENT OF THE PROBLEM  

Let’s consider a plane task associated 
with the description of the process of the 
medium of cement solution filling at the initial 
time t = 0 in the state of the rest all Euclidean 
plane R2 with Cartesian rectangular coordinate 
system Х0У. At time t = 0 in the cement 
solution starts hydration and hydrolysis of the 
constituents of cement clinker – tricalcium 
silicate and tricalcium aluminate with the 
formation respectively dicalcium hydrosilicate, 
calcium hydroxide and tricalcium 
hydroaluminate: 

 
3СаО·SiO2+nН2О=2СаО·SiO2 (n–1)Н2О+Ca(OH)2, 

   (1.1) 
 

3СаО·Аℓ2О3 + 6Н2О = 3СаО·Аℓ2О3·6Н2О, (1.2) 
 

which are gradually moving from one colloidal 
state to the state of crystallization and, 
henceforth, to the state of cement stone. 

Here and further we define two states of 
working media: а-state (a priori state of rest) 
and е-state (state of excitation). It should be 
marked that the medium of cement solution as 
visco-plastic fluid transfers from homogeneous 
and isotropic а-state into е-state («а – е» 
transfer) with the help of external variable 
plane-parallel field )t,N(F


, 2R)y,x(N   which 

is switched on at the moment of time t = 0 and 
which is a general model of vibro excitation 
that is the formation of colloidal medium and 
as the consequence of chemical reactions (1.1) 
and (1.2), and е-state begins at the moment of 
time t = 0.  

The term general model should be 
understood in the sense that at the special task 
of vibro field )t,N(F


 can be studied the plane 

task and in restricted simply connected field 
2RG  . а-state and е-state will be 

characterized by their sets of the parameters 
which we’ll fix by the indexes correspondingly 
«а» and «е». For example, the mass surface 
density of the cement solution (without filler) 

let’s denote by the symbol а1а1аа nm  , 
where m1а – mass of a separate cement lobe, 
n1а – surface density of the particles of cement, 
ρ'а – surface density of water in the solution 
etc.  

The statement of the problem «а – е» of 
transfer of the medium of cement solution is 
reduced to the following:  

- to explore the response of the system 
under consideration at the model level viscous-
plastic fluid to an external alternating field 

)t,N(F


, 
- and to consider the process of the 

interaction of massive flows appearing and 
filled as the main theoretical and technological 
working mechanism with the aim of definition 
of effective viscosity of concrete solution and 
optimal parameters of the external field of 
excitation for obtaining maximum density of 
modified concrete.  

It should be marked that full description 
of the response of working medium to the 
effect of force vibro field )t,N(F


 should be 

conducted in the terms of indexes 
 )t,N(),t,N(),t,N( eee 

 , where )t,N(e  – 
surface density of a mass, )t,N(e

  – surface 
density of impulse, )t,N(ee  – surface density 
of an energy. In this case the main parameter is 
the mass density )t,N(e , through which are 
easily expressed the other parameters. This is 
due to the fact that the movement of the 
cement solution in the presence of an external 
field )t,N(F


 is compulsory and, therefore, is 

not the nature of the relaxation. Moreover, 
dissipative processes in the moving working 
medium are due only to mechanical sticking of 
the particles during the two-, three-, and, in 
general, n-particle sticking with the formation 
of aggregated particles as the centers of the 
further relaxation process (crystallization) are 
already in the absence of an external excitation 
field. This is so-called – internal friction which 
is the effect of intermolecular interaction and 
is associated with the classical transport 
phenomena in liquids and gases, which can be 
interpreted by the language of the laws of 
conservation of mass, impulse and energy, and 
induced by swirling properties of the force 
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field )t,N(F


. It should be noted that the 
presence of turbulence in the working medium 
leads to a tensor-like distribution of the 
velocities of two components of cement 
solution: viscous-plastic liquid of cement 
particles and liquid vortex flows. 

MATERIALS  AND  RESULTS   
OF  RESEARCH 

1. Now we formulate the basic terms and 
principles (system of axioms) of construction 
of model of the process under research. 

А1. Cement solution with the filler in а-
state fills the entire Euclidean plane R2: 
cement solution and k-component filler have 
surface density of a mass correspondingly:  

 

a1a1а1аa1a nm,            (1.3) 
and  







1k

2i
iaiaa nm~ ,                     (1.4) 

 
where: miа, niа – mean mass of a 

particle and surface density of  i-components 
correspondingly, i = 2, 3,... .  

А2. At the moment of time t = 0 switches 
on the external variable plane parallel force 
field providing «а – е» transfer and having 
surface density of type  

 
)t,N(F)t,N(F)t,N(F .d.r.p.s


 ,        (1.5) 

 
where: )t,N(F p.s


 – solenoidal potential 

field, for which, with the exception of not 
more than the estimated number of points, 

0)t,N(Fdiv p.s 


 and 0)t,N(Frot p.s 


, and 

)t,N(F .d.r


 is a component of the turbulent with 

0)t,N(Frot .d.r 


 and 0)t,N(Fdiv .d.r 


. 
It is easy to see that the surface density 

of forces )t,N(F .d.r


 – is the vector random 

variable defined on some initial probable space 
{Ω, U, P}, where Ω = {ω} space of elementary 
events ω, U = {A} – algebra (or σ-algebra) of 
some event А и Р = Р (А) – probability 
function. Choosing the probability space is 
associated with the features of the mechanism 
of vibro excitation and will not be explored in 

this work. The action of vibro field (1.5) 
defines only dynamic properties of cement 
concrete solution and does not affect the 
physical chemical processes of its 
modification.  

А3. The presence of external force field 
in the structure (1.5) of turbulent component 

)t,N(F .d.r


 contributes to the emergence of 

vortex flows in the cement mass )t(me  and 
surface density )t,N(ne , which is random 
function. Surface density of a mass of vortex 
flows and the density of flow of mass of 
vortex flows are respectively:  

 
)t,N(n)t(m)t,N( eee  ,            (1.6) 

 
)t,N(w)t,N(n)t(m eeee


 ,          (1.7) 

 
where: )t,N(ne  – density of the number 

of vortex flows in the point N = N(x, y),  
)t,N(we

  – the rate of the flow of vortex 
flows in the point N = N(x, y).  

Let’s define the average index of the 
density )t,N(ne  using dynamic limiting 
transition:  

 

 



 S

e
S

def

ee N
d)t,N(n

)S(

1
lim)t,N(n)t(n , (1.8) 

 
where: dxdyd N  ,  

)S(  – the square of simply connected 

field 2RS .  
Thus, the dynamic density of vortex 

flows )t(ne  can be considered as a random 
process with the discrete or continuous 
parameter t, t ≥ 0. Let’s note that here the 
meaning of the transition boundary (1.8) is to 
eliminate the influence of the boundary and 
thereby meet the requirements of the basic 
problem.  

А4. The vortex flow is the unification at 
one point 2

000 R)y,x(M   of the vortex flow 
with the intensity E(t) and virtual flow with the 
intensity H(t), so that:  

 
10,0t),t(E)t(H  ,        (1.9) 
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where: λ – coefficient of a mass 
dispersion in the ordinary liquid vortex flow.  

The ratio (1.9) defines the specifics of 
the vortex flow: if 0)t,M(Frot 0d.r 


, then the 

circulation of the vector field )t,N(F .d.r


 leads 

with the effect of inner friction in the cement 
solution to the dispersion of the mass in the 
ordinary liquid with the intensity Н(t), which 
is equivalent to the action of the flow at the 
point  )y,x(M 000 . The point  )y,x(M 000  moves 
in the cement solution along the line of the 
flow of the function )t,N(F .p.s


, coinciding with 

the line of the break of the function )t,N(F .d.r


, 

on the pass:  
 

0t),t(yy),t(xx 0000  .      (1.10) 
 

A5. In е-state the cement solution is 
considered as two liquid medium with the 
qualitatively different components.  

The first component is the cement liquid 
consisting of cement particles with the mass 

)t(m e1  and the ordinary liquid and has the 
surface density of a mass )t,N(e  and the 

density of the flow of a mass )t,N(e


 as:  
 

)t,N()t,N()t,N( ee1e  ,          (1.11) 
 

  )t,N(v)t,N()t,N()t,N( e1ee1e


 , (1.12) 

 
where: )t,N(n)t(m)t,N( e1e1a1   – the 

surface density of a mass of cement particles,  
)t,N(n e1  – the surface density of the 

number of cement particles,  
)t,N(e  – the surface density of the 

ordinary liquid,  
)t,N(v e1


 – the rate of cement liquid at the 

point )y,x(NN  .  
And the second component is the liquid 

of vortex flows with the surface density of a 
mass (1.6) and surface density of the flow of a 
mass (1.7). It should be noted that the presence 
of the turbulence in the working medium leads 
to the tensor type of the distribution of the 
rates of two component cement solution: 
viscous plastic liquid of cement particles and 
the liquid of vortex flows. The dependence 

between the rates )t,N(v e1


, )t,N(we
  and the 

external force field )t,N(F


 will be defined 
below.  

А6. The action of solenoidal potential 
field )t,N(F .d.r


 promotes the emergence of two 

virtual force solenoidal potential vector fields 
in this model )t,N(G )1(

.p.s


 и )t,N(G )2(

.p.s


, which 

accordingly define the dynamics of the first 
and the second components correspondingly 
that is viscous plastic liquid and the liquid of 
vortex flows.  

А7. The transfer of the mass of two 
components cement liquid in the presence of 
the external force field )t,N(F


 (1.5) with 

turbulent constituent )t,N(F .d.r


 takes place 

along the lines of the flow of force solenoidal 
potential field )t,N(F .p.s


 with the rate:  

for the first component with the rate:  
 

  
t

0 R
pk.p.s

)1(
ikei1

2

dd),P(F)t,PN()t,N(v , 

(1.13) 
 

for the second component moving along the 
line of the flow of the field )t,N(G )2(

.p.s


 or 

)t,N(F .p.s


 on the pass (1.10) of the line of 

turbulence for which 0)t,N(Frot d.r 


, with the 
rate:  

 

  
t

0 R
Pk.p.sikei

2

dd),P(F)t,PN()t,N(w . 

(1.14) 
 

Bivalent tensors )t,N()1(
ik  и )t,N(ik , 

which are in the formulas (1.13) and (1.14), 
should be considered as the coefficients of 
effective viscosity in two component cement 
solution.  

А8. Let’s consider that the radius (r) of 
vortex flow is distributed according to normal 
law with expectation function α = 0 and root-
mean-square deviation σ = σ(t), which is the 
function of the parameter (t), that is the density 
of the probability of random variable (r) is 
equal:  
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)t(2

r

2;0

2

2

e
)t(

r
)r(p 



 


 .             (1.15) 

 
The action of vibro field )t,N(F


 takes 

place in the time intervalе [0, Т], where Т –
 the time of technological functionality of 
colloidal medium when the dispersion of the 
mass of ordinary liquid stops and starts the 
process of crystallization of gel with dicalcium 
hydrosilicate, calcium hydroxide and 
tricalcium aluminate hydrate. If the critical 
mass of colloidal cement particle is equal to 

a11kp1 mm  , β1 > 1, then the index of the 

parameter τtec – technological time of 
modification of cement solution in the 
presence of vibro field )t,N(F


 is in equations  

 

a11tece1kp1 m)(mm  .             (1.16) 

 
Then the criterion of the effectiveness of 

the process of the modification of cement 
solution in the presence of vibro field )t,N(F


, 

is:  
 

τteс ≤ T,                    (1.17) 
 

where: τteс – solution of equations 
(1.16).  

А9. The presence of the filler does not 
affect the mechanical, physical and chemical 
technological parameters of vibrorheologic 
process of conversion of cement solution into 
the state of cement stone.  

2. Let’s consider further the semi-
phenomenological model of vibrorheology of 
cement concrete solution.  

We’ll form based on the axioms А1-А9 
formulated in the previous item, the 
mathematical mechanism of the research of the 
contact task of mutual movement of the 
medium of cement solution and the filler in the 
presence of the external vibro field )t,N(F


. 

First of all, let’s find the actual expression of 
the surface density of a mass of cement 
solution (1.3) in а-state. For a mass а1m  of a 

separate cement particle we’ll have:  
 

а1
3
а1а1 r

3

4
m  ,                (2.1) 

 
where: а1r  – average radius of cement 

particle,  
а1  – volume mass density of cement 

lobe.  
Thus, the surface density of a mass а1  

of cement particles in в a-state is equal to:  
 

а1а1
3
а1а1а1а1 nr

3

4
nm  .             (2.2) 

 
Taking into account (2.2) for the surface 

density of a mass а  of ordinary liquid in a-
state we get:  

 

а1а
3
а1

а1

а nr
3

4

n

1
2

3














 ,               (2.3) 

 
where: а  – volume density of a mass 

of ordinary liquid in а-state.  
On the base of the formulas (2.2) and 

(2.3) the surface density of a mass of cement 
solution (1.3) in а-state will be:  

 

.nr
3

4

n

1
nr

3

4
а1а

3
а1

а1

а1а1
3
а1

аа1а

2
3



















    (2.4) 

 
Further in е-state the surface density of a 

mass of cement solution )t,N(e , taking into 
account the formulas (1.6) and (1.11), is 
defined by the equity:  

 

).t,N()t,N(n)t(m)t,N(n)t(m

)t,N()t,N()t,N(

ee1e1ee

eee




 (2.5) 

 
Making (2.5) dynamic boundary transfer 

(1.8), we get:  
 

)t,N()t,N()t,N( eee  ,         (2.6) 

or  

).t(n)t(m)t()t(n)t(m

)t()t()t(

eeee1e1

eee




        (2.7) 

 



INVESTIGATION OF THE PROCESS OF VIBRORHEOLOGY OF CEMENT CONCRETE SOLUTIONS                        205 

If in (1.5) is absent the turbulent 
component )t,N(F .d.r


, that is 0)t,N(F .d.r 


, then 

the formula (2.7) will be:  
 

)t()t(n)t(m)t()t( ee1e1ee  .      (2.7) 
 

Let’s mark that in the formula (2.5) the 
indexes )t(m e1 , )t,N(n e1 , )t,N(e , have 
determined character and the index )t,N(ne  is 
the random function. First we find the mass 

)t(  of ordinary liquid dispersed by the 
vortex flow. As the geometric features of the 
vortex flow do not depend on its state on the 
plane 2R , then for the simplicity of subsequent 
constructions we place the vortex flow into 
center of coordinates )0,0(O , supposing its 
radial symmetry. We find with the help of the 
formula (1.15) the average radius r  of vortex 
flow:  

 

).t(
2

drer
)t(

1

dr)r(rp)t(rr

0

)t(2

r

2
2

0
;0

2

2
























         (2.8) 

 
We calculate the circulation of vortex 

point (Fig. 1): 
 

                               y 

                                                                             2R  
                                                       ),(.. tNdr


 

            C 
                                                          N 
 
 
                               0                        r                   x 
 
 
 

 
 

Fig. 1. Vortex flow is in the center of coordinates and 

average radius r  

   
C

222
.d.r ryx:C,sd),t,N()t(E

 , (2.9) 

 
where: )t,N(.d.r

  – the density of the 
flow of mass of vortex is equal to:  

 
 

),t,N(F)t,N(K)t,N(v

),t,N(v)t(n)t(m)t,N(

.d.r

ea1e1.d.r






 
   (2.10) 

where: )t,N(K  – coefficient of 
turbulence of field )t,N(F .d.r


,  

)t(e   – surface density of a mass of 
ordinary liquid supposing that )t(ne  is equal to 
zero. 

Inserting (2.10) into (2.9), we get:  
 
 

 .sd),t,N(F)t,N(K)t(

sd),t,N(F)t,N(Kn)t(m)t(E

.d.r
C

e

C
.d.ra1e1









 







 (2.11) 

 
Taking into account that dsssd 0


 ,  

where: 0s
  – unit vector of tangent line to 

the wire circuit С in the point N, 0.d.r s)t,N(F


, 

on the base of (2.11) we get:  
 

.d)t,N(F)t,N(K)t()t(r

d)t,N(F)t,N(Kn)t(r)t(m)t(E

.d.r

2

0
e

2

0
.d.ra1e1

 















 (2.12) 

 
Thus, mass )t(  of ordinary liquid 

dispersed by the vortex flow is equal to:  
 

 

,dd),N(F

),N(K)tm()(rn)(r)(m

d)(E)t(

.d.r

t

0

2

0
ea1e1

t

0



 



 







  (2.13) 

 

 T,0t),t(
2

)t(r 


 .      (2.14) 

 
Let’s formulate the analytical scheme for 

finding indexes )t(m e1  and )t(n e1 . It should be 
noted that the index )t(m e1  has two 
constituents: colloidal particle and residual 
(relict) initial cement particle.  

Further we give the following definition. 
Coefficient of the initial hydration .g.ik  is 

called the index which is equal to the relative 
volume of cement lobe which comes into 
reaction of hydration with the ordinary liquid 
(water) that is:  
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3
a1

3
rem

3
a1

3
rem

3
a1

.g.i
r

r
1

r
3

4

r
3

4
r

3

4

k 



 ,        (2.15) 

 
where: rrem – radius of relict cement 

particle.  
If the coefficient of initial hydration .g.ik  

stated a priori, the radius rrem of relict cement 
particle on the base of (2.15) is defined by the 
equation:  

 
3

.g.ia1rem k1rr  .             (2.16) 

 
Coming back to the equation (1.16), we 

make the following refinement regarding the 
interpretation of the parameter τteс – 
technological time of modification of cement 
solution in the presence of vibro field: the 
parameter τteс defines time interval within 
which takes place the modification of initial 
cement lobe till relict state with the account of 
the criterion of the effectiveness (1.17).  

In this connection we introduce the 
index )t(m e1  as:  

 


 ,r

3

4
)t()(r

)t()t(r)t(r
3

4
)t(m

a1
3
a1atectec

3
e1

tec
3
e1

3
cole1




        (2.17) 

 
where: )t(rcol  – radius of colloidal 

cement particle,  
)t(r e1  – radius of residual primary cement 

particle at the moment of time t, ]T,0[t  ,  
)t(  – Heaviside function.  

The obvious expression of the indexes 
)t(rcol  and )t(r e1  in (2.17) can be found taking 

into account the following concepts. The 
formation of colloidal cement particle takes 
place as the sequence of chemical reactions of 
hydrolysis (1.1) and (1.2), thus, it is correct the 
statement that the indexes )t(rcol  and )t(r e1  
conform correspondingly the differentiation 
equations of hydrolysis and hydration:  

 

 T,0t,0,r)0(r),t(r
dt

)t(dr
a1colcol

col    

(2.18) 

and 

 T,0t,0,r)0(r),t(r
dt

)t(dr
a1e1e1

e1  .  

(2.19) 
 

The solution of equations (2.18) and 
(2.19) are:  

 
 T,0t,0),texp(r)t(r а1col  ,  (2.20) 

 
]T,0[t,0),texp(r)t(r tecа1e1  .  (2.21) 

 
Let’s make some notes regarding the 

quantitative index of the parameter α in 
formulas (2.20), (2.21). The magnification of 
the radius )t(rcol  (2.20) stops at the moment of 
time t = T, when starts the sticking of 
adjoining colloidal cement particles (moment 
of setting). In this connection it is necessary to 
define the upper boundary supr  of index )t(rcol . 

It is easy to see that the parameter supr  should 

meet the requirement:  
 

a1a1

3
sup

nn

1
r

3

4
 .           (2.22) 

 
On the base of (2.22) we finally find:  

 

a1

3
sup

n

1

4

3
r


 .                    (2.23) 

 
Taking into account the formula (2.23), 

and the circumstance that the function )t(rcol  
(2.20) is monotonous increasing at the 
intervalе ]T,0[ , we have:  
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3
supa1col

n

1

4

3
r)Texp(r)T(r


 .  (2.24) 

 
The solution of the inequation (2.24) 

regarding the index α we find as:  
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3

a1 n

1

4

3

r

1
ln

T

1


 .               (2.25) 

 
Using formulas (2.21), (2.16), we get the 

ratio:  
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3
.g.ia1remteca1tece1 k1rr)exp(r)(r  .   (2.26) 

 
From the equation (2.26) follows the 

expression for the index α:  
 

3
.g.itec k1

1
ln

1


 .             (2.27) 

 
For the surface density )t(n e1  of colloidal 

cement particles is the expression:  
 









 )t(n)t(r1n)t(n e

2
a1e1 .          (2.28) 

 
If 0)t,N(F .d.r 


, then the formula (2.28) is 

simplified to:  
 

a1e1 n)t(n  .                  (2.28) 
 

Random function )t(ne , which in the 
formula (2.28), can be introduced as:  

 
)t(n)t(n)t(n )(

e
)(

ee
  ,               (2.29) 

 
where: )t(n )(

e
  and )t(n )(

e
  mean 

accordingly the surface density of vortexes 
oriented in the opposite directions. 

If suppose that at even impactions the 
vortexes with the equal orientation repel and 
with the opposite orientation disappear with 
the formation of the first component then 
indexes )t(n )(

e
  and )t(n )(

e
  will conform the 

system of differential equations as:  
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 (2.30) 

 
The system of differential equations 

(2.30) is the normal system which is brought 
into one linear homogeneous differential 
equation of the form:  

 

0)t(n
dt

)t(nd )(
e

2
2

)(
e

2

 


.          (2.31) 

As the characteristic equation for 
differential equation (2.31) is defined by 
equity:  

 
0k 22  ,                  (2.32) 

 
then its general solution is:  

 
)texp(C)texp(C)t(n 21

)(
e  .       (2.33) 

 
For the function )t(n )(

e
 , taking into 

account (2.30) and (2.33), we have:  
 

)texp(C)texp(C)t(n 21
)(

e  .      (2.34) 
 

The usage of initial data for the system 
(2.30) allow us to find easily arbitrary 
constants in the formulas (2.33) and (2.34):  

 

)nn(
2

1
C),nn(

2

1
С )()(

2
)()(

1
  .  (2.35) 

 
Thus, for the function )t(ne  (2.29), 

taking into account the equities (2.33) - (2.35), 
we finally get:  

 
]T,0[t,nnn),texp(n)t(n )()(

e   . 
(2.36) 

 
Let’s note that in (2.36) should be 

followed the terms of coordination:  
 

)0(r

1
nn)t(n

2
max

e


 .            (2.36)  

 
Thus, on the base of (2.28) and (2.36), 

the surface density )t(n e1  of colloidal cement 
particles is defined by the equity:  

 

]T,0[t,)texp()t(rn1n)t(n 2
а1e1 








 . (2.37) 

 
Now let’s find the surface density of a 

mass of cement solution (2.7) at the moment 
of time t = T, that is at the moment of time 
when the reactions of hydrolysis and hydration 
have been finished. Thus, on the base of е 
(2.7), we have:  
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).T(n)T(m)T()T(n)T(m

)T()T()T(

eeee1e1

eee




   (2.38) 

 
In case (2.7), when 0)t,N(F .d.r 


, formula 

(2.38) will be:  
 

)T(n)T(m)T()T( e1e1ee   .     (2.38) 
 

In the formula (2.38) the values )T(e  
and )T(me  are undetermined. For the surface 
density of a mass )T(e  of residual ordinary 
liquid we get:  
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Further according to equity (2.14), the 

vortex flow does not contain the residual 
ordinary liquid and, thus, its mass )t(me  is 
defined by the formula:  

 
]T,0[t),t(mn)t(r4)t(m e1а1

2
e  .     (2.40) 

 
For t = T, on the base of (2.40), we get:  

 
)T(mn)T(r4)T(m e1а1

2
e  .            (2.40) 

 
Using the evident expression (2.8) and 

(2.17) regarding the values )t(r  and )t(m e1  for 
the moment of time t = T, on the base (2.40), 
we have:  
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  (2.41) 

 
In connection with getting the formula 

(2.41) for the calculation of the mass )T(me  of 
vortex flow we’ll make some details regarding 
the equity (2.13), which defines the quantity 

)t(  of ordinary liquid dispersed by the 
vortex flow for the interval of time 

]T,0[t],t,0[  . The value )t(  at t = T can be 
also defined on the basis of the following 
concepts. As the number of colloidal cement 
particles connected with the system of vortex 

flows at t = T is equal to а1e
2 n)T(n)T(r , then 

can be easily found considering that (2.39), the 
value )T(  is defined by the equity:  
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Comparing the formulas (2.13) and 

(2.42), for the parameter λ we get:  
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 (2.43) 

 
In the ratio (2.43) the value )t(e  is equal 

to:  
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For the quantitative valuation of the 

degree of impaction of cement solution we add 
series of the technological parameters λ1, λ2, 
λ3. The degree of impaction λ1 of the first level 
is defined by the formula:  
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On the base of (2.4), (2.17), (2.38) can 

be easily written for (2.45):  
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(2.46) 
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The degree of impaction λ2 of the second 
level is defined by the ratio:  
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Using (2.4), (2.17), (2.38), (2.39), (2.41), 

we modify the expression (2.47) as:  
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(2.48) 

 

The degree of impaction λ3 of the third 
level is defined by:  

 

1

2
3 


 ,                           (2.49) 

 

where: λ1, λ2, are defined by the 
equities (2.46) and (2.48).  

Now let’s describe the interaction of the 
structured two-component cement solution 
with the filler (1.4), taking into account axiom 
А9. The optional particle of the filler is 
introduced as restricted simple connected field 

2R , with the center of masses at the point 
P, has sectionally smooth border L, mass M, 
rate )t,N(u

  at the point N and unit vector of 
external normal line  n


 at the point N (Fig. 2).  
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Fig. 2. Scheme of interaction of two-component cement 
solution with the optional particle Σ of the filler at the 
point N  

The interaction of two-component 
cement solution with the particle Σ along the 
border L at the time interval ]T,0[t],t,0[   
leads to sticking of colloidal mass ΔМ, which 
is defined by the formula:  
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 (2.50) 

 
In the equity (2.50) 1  and 2  mean 

coefficients of sticking of colloidal medium on 
the optional particle Σ.  

CONCLUSIONS 

On the ground of the results of 
experimental theoretic researches:  

1.  It is shown that mathematical 
constructions stated above have general 
character and determine the direction in the 
largest degree in which the theory of 
vibrorheology of cement concrete solutions 
must develop.  

2. It is proved that the detailed study of 
the geometry of the grid vector )t,N(F


 leads to 

the specific technological recommendations 
related to the parameters and the structure of 
shuttering forms which are used in the practice 
of vibro excitation.   

3. It is argued that the results obtained in 
the article can be also used in the study:  

- firstly, the process of corrosion of 
concrete blocks under the influence both of 
aggressive media solutions of inorganic 
substances[1, 9, 10], and biologically active 
habitat of some bacterial species (particularly 
sulfur-oxidizing thione bacteria) [6],  

- secondly, the technologies of 
chemical treatment of especially dense 
concretes by the method of fluosilicate 
treatment [14].  
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ИССЛЕДОВАНИЕ  ПРОЦЕССА  
ВИБРОРЕОЛОГИИ  ЦЕМЕНТНО-БЕТОННЫХ  
РАСТВОРОВ  С  ВНЕШНИМ  ИСТОЧНИКОМ  

ДИНАМИЧЕСКОГО  ВОЗДЕЙСТВИЯ  

Владимир Пилипенко 

А н н о т а ц и я . В статье, в рамках 
полуфеноменологического подхода 
сформулированы основные требования к 
математической модели движения среды 
цементного раствора и его взаимодействия с 
наполнителем в плоском случае, когда внешнее 
переменное силовое поле возбуждения имеет 
турбулентную составляющую. Дана строгая 
трактовка влияния параметров исследуемой модели 
на процесс виброреологии цементно-бетонных 
растворов и сформулирован критерий её 
эффективности.  
К лю ч е в ы е  с л о в а . Виброреология цементно-
бетонного раствора, турбулентность, вихросток, 
тензоры первой и второй вязкости.  

 
 
 


