PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 17 | 4 |

Tytuł artykułu

The strongest resistance of Staphylococcus aureus to erythromycin is caused by decreasing uptake of the antibiotic into the cells

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The consequence of excessive use of macrolides is a high occurrence of mechanisms responsible for resistance to these drugs. Of 97 erythromycin-resistant bacterial strains gathered in the Wrocław area in Poland, 60% exhibited very high resistance, and those with the inducible MLSB (macrolide-lincosamide-streptogramin B) resistance phenotype predominated. Direct genetic investigation revealed that the erm genes coding for ribosomal methylases are the most frequently occurring erythromycin resistance-determining genes. No genetic resistance determinant was detected in 13% of the erythromycin-resistant strains. The efflux mechanism occurs in strains isolated from the nasopharyngeal cavity twice as often as in those isolated from other material, where the mechanism connected with target site modification predominates. Measurements of radiolabelled antibiotic accumulation inside bacterial cells revealed that in highly resistant strains (MIC > 1024 μg/ml), an important factor responsible for the resistance is the permeability barrier at the cell wall level. This would be a hitherto unknown mechanism of resistance to erythromycin in Staphylococcus aureus.

Wydawca

-

Rocznik

Tom

17

Numer

4

Opis fizyczny

p.633-645,fig.,ref.

Twórcy

  • Department of Microbiology, Silesian Piasts University of Medicine in Wroclaw, Wroclaw, Poland

Bibliografia

  • 1. Gillespie, S.H., Hawkey, P.M. and Peacock, S. Staphylococcus aureus. in: Principles and practice of clinical bacteriology (John Wiley & Sons, Ed.), 2ed edition, England, 2006, 73-98.
  • 2. Sivaraman, K., Venkataraman, N. and Cole, A.M. Staphylococcus aureus nasal carriage and its contributing factors. Future Microbiol. 4 (2009) 999- 1008.
  • 3. Jensen, S.O. and Lyon, B.R. Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiol. 4 (2009) 565-582.
  • 4. Aktas, Z., Aridogan, A., Kayacan, C.B. and Aydin, D. Resistance to macrolide, lincosamide and streptogramin antibiotics in staphylococci isolated in Istanbul, Turkey. J. Microbiol. 45 (2007) 286-290.
  • 5. Reynolds, E., Ross, J.I. and Cove, J.H. Msr(A) and related macrolide/ streptogramin resistance determinants: incomplete transporters? Int. J. Antimicrob. Agents 22 (2003) 228-236.
  • 6. Otto, M. and Götz, F. ABC transporters of staphylococci. Res. Microbiol. 152 (2001) 351-356.
  • 7. Matsuoka, M., Inoue, M., Endou, K. and Nakajima, Y. Characteristic expression of three genes, msr(A), mph(C) and erm(Y), that confer resistance to macrolide antibiotics on Staphylococcus aureus. Fems Microbiol. Lett. 220 (2003) 287-293.
  • 8. Prunier, A.L., Malbruny, B., Tandé, D., Picard, B. and Leclercq, R. Clinical isolates of Staphylococcus aureus with ribosomal mutations conferring resistance to macrolides. Antimicrob. Agents Chemother. 46 (2002) 3054- 3056.
  • 9. Kawai, M., Yamada, S., Ishidoshiro, A., Oyamada, Y., Ito, H. and Yamagishi, J. Cell-wall thickness: possible mechanism of acriflavine resistance in meticillin-resistant Staphylococcus aureus. J. Med. Microbiol. 58 (2009) 331-336.
  • 10. National Committee for Clinical Laboratory Standard Institution: methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard – fifth edition. NCCLS (2000) M7-A5.
  • 11. Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute. Eighteenth Informational supplement. (2008) M100-S18.
  • 12. Lina, G., Quaglia, A., Reverdy, M.E., Leclercq, R., Vendenesch, F. and Etienne, J. Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob. Agents Chemother. 43 (1999) 1062-1066.
  • 13. Wondrack, L., Massa, M., Yang, B.V. and Sutcliffe, J. Clinical strain of Staphylococcus aureus inactivates and causes efflux of macrolides. Antimicrob. Agents Chemother. 40 (1996) 992-998.
  • 14. Zhan, Z., Zhi-Qiang, L., Peng-Yuan, Z., Fu-Ai, T. and Ping-Chang, Y. Influence of efflux pump inhibitors on the multidrug resistance of Helicobacter pylori. World J. Gastroenterol. 16 (2010) 1279-1284.
  • 15. Peric, M., Bozdogan, B., Jacobs, M.R. and Appelbaum, P.C. Effects of an efflux mechanism and ribosomal mutations on macrolide susceptibility of Haemophilus influenzae clinical isolates. Antimicrob. Agents Chemother. 47 (2003) 1017-1022.
  • 16. Butaye, P., Cloeckaert, A. and Schwarz, S. Mobile genes coding for effluxmediated antimicrobial resistance in Gram-positive and Gram-negative bacteria. Int. J. Antimicrob. Agents 22 (2003) 205-210.
  • 17. Hooper, D.C. Fluoroquinolone resistance among Gram-positive cocci. Lancet Infect. Dis. 2 (2002) 530-538.
  • 18. Nakajima, Y. Mechanisms of bacterial resistance to macrolide antibiotics. J. Infect. Chemother. 5 (1999) 61-74.
  • 19. Schmitz, F.J., Sadurski, R., Kray, A., Boos, M., Geisel, R., Köhrer, K., Verhoef, J. and Fluit, A.C. Prevalence of macrolide-resistance genes in Staphylococcus aureus and Enterococcus faecium isolates from 24 European university hospitals. J. Antimicrob. Chemother. 45 (2000) 891-894.
  • 20. Spiliopoulou, I., Petinaki, E., Papandreou, E. and Dimitracopoulos, G. erm(C) is the predominant genetic determinant for the expression of resistance to macrolides among methicillin-resistant Staphylococcus aureus clinical isolates in Greece. J. Antimicrob. Chemother. 53 (2004) 814-817.
  • 21. Matsuoka, M., Endou, K., Kobayashi, K., Inoue, M. and Nakajima, Y. A plazmid that encodes three genes for resistance to macrolide antibiotics in Staphylococcus aureus. FEMS Microbiol. Lett. 167 (1998) 221-227.
  • 22. Roberts, M.C., Sutcliffe, J., Courvalin, P., Jensen, L.B., Rood, J. and Seppala, H. Nomenclature for macrolide and macrolide-lincosamidestreptogramin B resistance determinants. Antimicrob. Agents Chemother. 43 (1999) 2823-2830.
  • 23. Janas, T. and Janas, T. The selection of aptamers specific for membrane molecular targets. Cell. Mol. Biol. Lett. 16 (2011) 25-39.
  • 24. Augustyniak, D., Mleczko, J. and Gutowicz, J. The immunogenicity of the liposome-associated outer membrane proteins (OMPs) of Moraxella catarrhalis. Cell. Mol. Biol. Lett. 5 (2010) 70-89.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-71fc813a-5da4-4ef5-b957-26d2e145af1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.