PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 08 |

Tytuł artykułu

Molecular cloning and expression of tryptophan decarboxylase from Mitragyna speciosa

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Tryptophan decarboxylase (TDC) catalyzes the decarboxylation of tryptophan to tryptamine in mitragynine biosynthesis via the shikimate pathway. Using the rapid amplification of cDNA ends (RACE) technique, the gene encoding TDC from Mitragyna speciosa was cloned (designated as MsTDC). The MsTDC cDNA contained an open reading frame (ORF) of 1,521 base pairs (bp) encoding 506 amino acid residues. It had a pyridoxalphosphate (PLP)-binding site at the amino acid position 313–334 residues. The MsTDC showed homology of 68–76 % to the TDC of other plants. Heterologous expression in Escherichia coli afforded the soluble proteins as an apparent band of 57 kDa as judged by SDS-PAGE. Expression of the MsTDC in M. speciosa hairy roots under the 35S promoter was performed by insertion of MsTDC into pCAMBIA1300-gfp. The transgenic hairy root lines were detected by fluorescence microscopy and showed an increased accumulation of tryptamine.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

08

Opis fizyczny

p.2611-2621,fig.,ref.

Twórcy

  • Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
  • Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
  • Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
autor
  • Natural Products Laboratory, Institute of Biology, Leiden University, 55 Einsteinweg, 2300 RA Leiden, The Netherlands

Bibliografia

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of realtime quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250
  • Canel C, Lopez-Cradoso MI, Whitmer S, van der Fits L, Pasquali G, van der Heijden R, Hoge JHC, Verpoorte R (1998) Effects of overexpression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205:414–419
  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743
  • De Luca V, Marineau C, Brisson N (1989) Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal DOPA decarboxylase. Proc Natl Acad Sci 86:2582–2586
  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protoc 2:953–971
  • Facchini PJ, Huber-Allanach KL, Tari LW (1999) Plant aromatic Lamino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry 54:121–138
  • Fernandez JA, Owen TG, Kurz WG, De Luca V (1989) Immunological detection and quantitation of tryptophan decarboxylase in developing Catharanthus roseus seedlings. Plant Physiol 91:79–84
  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) The proteomics protocols handbook. Humana Press, Totowa
  • Goddijin OJM, Pennings EJM, van der Helm P, Verpoorte R, Hoge JHC (1995) Overexpression of a tryptophan decarboxylase cDNA in Catharanthus roseus crown gall calluses results in increased tryptamine levels but not in increased terpenoid indole alkaloid production. Transgenic Res 4:315–323
  • Guillon S, Tremouillaux Guiller J, Pati PK, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9:341–346
  • Fraley RT, Horsch, RB, Rogers SG (1994) Chimeric genes for transforming plant cells using viral promoters. United States Patent No. 5,352,605
  • Janchawee B, Keawpradub N, Chittrakarn S, Prasettho S, Wararatananurak P, Sawangjaroen K (2007) A high-performance liquid chromatographic method for determination of mitragynine in serum and its application to a pharmacokinetic study in rats. Biomed Chromatogr 21:176–183
  • Jumali SS, Said IM, Baharum SN, Ismail I, Rahman ZA, Zainal Z (2011) Molecular cloning and characterization of strictosidine synthase, a key gene in biosynthesis of mitragynine from Mitragyna speciosa. Afr J Biotechnol 10(68):15238–15244
  • Kikura-Hanajiri R, Kawamura M, Maruyama T, Kitajima M, Takayama H, Goda Y (2009) Simultaneous analysis of mitragynine, 7-hydroxymitragynine, and other alkaloids in the psychotropic plant ‘‘kratom’’ (Mitragyna speciosa) by LC-ESI-MS. Forensic Toxicol 27:67–74
  • López-Meyer M, Nessler CL (1997) Tryptophan decarboxylase is encoded by two autonomously regulated genes in Camptotheca acuminata which are differentially expressed during development and stress. Plant J 11(6):1167–1175
  • Nagakura N, Rueffer M, Zenk MH (1979) The biosynthesis of monoterpenoid indole alkaloids from strictosidine. J Chem Soc (Perkin I), 2308–2312
  • Noe W, Mollenschott C, Berlin J (1984) Tryptophan decarboxylase from Catharanthus roseus cell suspension cultures: purification, molecular and kinetic data of the homogenous protein. Plant Mol Biol 3:281–288
  • Page RDM (1996) Treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
  • Pennings EJM, Hegger I, Van der Heijden R, Duine JA, Verpoorte R (1987) Assay of tryptophan decarboxylase from Catharanthus roseus plant cell cultures by high-performance liquid chromatography. Anal Biochem 165:133–136
  • Pfaffl MW, Horgan GW, Demppfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36
  • Phongprueksapattana S, Putalun W, Keawpradub N, Wungsintaweekul J (2008) Mitragyna speciosa: hairy root culture for triterpenoid production and high yield of mitragynine by regenerated plants. Z Naturforsch 63c:691–698
  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York
  • Sevón N, Oksman-Caldentey KM (2002) Agrobacterium rhizogenes-Mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868
  • Stachel SE, Zambryski PC (1989) Generic trans-kingdom sex? Nature 340:190–191
  • Takayama H (2004) Chemistry and pharmacology of analgesic indole alkaloids from the rubiaceous plant, Mitragyna speciosa. Chem Pharm Bull 52:916–928
  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882
  • Thongpraditchote S, Matsumoto K, Tohda M, Takayama H, Aimi N, Sakai S, Watanabe H (1998) Identification of opioid receptor subtypes in antinociceptive actions of supraspinally-administered mitragynine in mice. Life Sci 62:1371–1378
  • Yamazaki Y, Sudo H, Yamazaki M, Aimi N, Saito K (2003) Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila: cloning, characterization and differential expression in tissues and by stress compounds. Plant Cell Physiol 44(4):395–403

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-71d01fe2-7660-4632-8379-561121e0a1c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.