PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 07 | 2 |

Tytuł artykułu

Is species identity, sex, age or individual quality conveyed by echolocation call frequency in European horseshoe bats?

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Horseshoe bats (Rhinolophus) use echolocation calls with a prominent part whose frequency is constant over time (CF) and matches the ‘acoustic fovea’ of the bats' hearing system. The present study on European Rhinolophus species investigates whether this CF component contains reliable information on species, sex, age class or quality (size and body condition) of the caller and could therefore have a communicative value. The resting frequencies (RF) were measured from stationary, handheld bats for the species Rhinolophus blasii, R. euryale, R. mehelyi and R. hipposideros (the latter with very low sample size) in Bulgaria, where they occur in sympatry. We recorded calls directly onto a laptop computer and used a specially designed analysis algorithm to achieve high and accurate frequency resolution. After silent periods, individuals ‘tuned in’ to their RFs always from lower frequencies, corroborating the recent finding that frequencies below RF might be used for auditory feedback control as well. Rhinolophus blasii could reliably be separated from its congeners by RF, while R. mehelyi overlapped strongly with both R. euryale and R. hipposideros. Only R. blasii showed sex and age differences in RF, albeit the overlap was large. Adult female R. blasii had higher RFs than both adult males and juvenile females. In R. blasii, RF was positively correlated with forearm length, body mass and body condition index; in R. mehelyi with body mass and body condition index. However, there was no correlation between RF and these body size parameters within a sex or age class for any of the species, suggesting that RF is not a reliable honest signal for intraspecific communication that would indicate the quality of a potential mate or competitor.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

07

Numer

2

Opis fizyczny

p.259-274,fig.,ref.

Twórcy

autor
  • Animal Physiology, Zoological Institute, Tubingen University, 72076 Tubingen, Germany
autor
autor
autor
autor

Bibliografia

  • Aldridge, H. D. J. N. 1986. Kinematics and aerodynamics of the greater horseshoe bat, Rhinolophus ferrumequinum, in horizontal flight at various flight speeds. The Journal of Experimental Biology, 126: 479-497.
  • Arlettaz, R., G. Jones, and P. A. Racey. 2001. Effect of acoustic clutter on prey detection by bats. Nature, 414: 742-745.
  • Balcombe, J. P., and M. B. Fenton. 1988. Eavesdropping by bats: The influence of echolocation call design and foraging strategy. Ethology, 79: 158-166.
  • Barclay, R. M. R. 1982. Interindividual use of echolocation calls: eavesdropping by bats. Behavioral Ecology and Sociobiology, 10: 271-275.
  • Bell, G. P., and M. B. Fenton. 1984. The use of doppler-shifted echoes as a flutter detection and clutter rejection system: the echolocation and feeding behavior of Hipposideros ruber (Chiroptera: Hipposideridae). Behavioral Ecology and Sociobiology, 15: 109-114.
  • Benda, P., T. Ivanova, I. Horáček, V. Hanák, J. Červeny, J. Gaisler, A. Gueorguieva, B. Petrov, and V. Vohralík. 2003. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part 3. Review of bat distribution in Bulgaria. Acta Societatis Zoologicae Bohemicae, 67: 245-357.
  • Bogdanowicz, W. 1992. Phenetic relationships among bats of the family Rhinolophidae. Acta Theriologica, 37: 213-240.
  • Bradbury, J. W., and S. L. Vehrencamp. 1998. Principles of animal communication. Sinauer Associates Inc., Sunderland, 882 pp.
  • Denny, M. 2004. The physics of bat echolocation: signal processing techniques. American Journal of Physics, 72: 1465-1477.
  • Dietz, C., and O. von Helversen. 2004. Identification key to the bats of Europe — electronical publication, version 1.0, 72 pp.; available at www.uni-tuebingen.de/tierphys/Kontakt/mitarbeiter_ seiten/dietz.htm.
  • Dunn, O. J. 1964. Multiple contrasts using rank sums. Technometrics, 6: 241-252.
  • Emde, G. v. d. 1988. Greater horseshoe bats learn to discriminate simulated echoes of insects fluttering with different wingbeat rates. Pp. 495-500, in Animal sonar: Processes and performance (P. E. Nachtigall and P. W. B. Moore, eds.). Plenum Press, New York, 862 pp.
  • Emde, G. v. d., and D. Menne. 1989. Discrimination of insect wingbeat-frequencies by the bat Rhinolophus ferrumequinum. Journal of Comparative Physiology A, 164: 663-671.
  • Emde, G. v. d., and H.-U. Schnitzler. 1990. Classification of insects by echolocating greater horseshoe bats. Journal of Comparative Physiology, 167A: 423-430.
  • Fenton, M. B. 2003. Eavesdropping on the echolocation and social calls of bats. Mammal Reviews, 33: 193-204.
  • Francis, C. M., and J. Habersetzer. 1998. Interspecific and intraspecific variation in echolocation call frequency and morphology of horseshoe bats, Rhinolophus and Hipposideros. Pp. 169-179, in Bat biology and conservation (T. H. Kunz and P. A. Racey, eds.). Smithsonian Institution Press, Washington D.C., 365 pp.
  • Guillén, A., J. Juste, and C. Ibáñez. 2000. Variation in the frequency of the echolocation calls of Hipposideros ruber in the Gulf of Guinea: an exploration of the adaptive meaning of the constant frequency value in rhinolophoid CF bats. Journal of Evolutionary Biology, 13: 70-80.
  • Habersetzer, J., G. Schuller, and G. Neuweiler. 1984. Foraging behavior and Doppler shift compensation in echolocating hipposiderid bats, Hipposideros bicolor and Hipposideros speoris. Journal of Comparative Physiology, 155A: 559-567.
  • Heller, K.-G., and O. von Helversen. 1989. Resource partitioning of sonar frequency bands in rhinolophoid bats. Oecologia, 80: 178-186.
  • Holderied, M. W., C. Korine, M. B. Fenton, S. Parsons, S. Robson, and G. Jones. 2005. Echolocation call intensity in the aerial hawking bat Eptesicus bottae (Vespertilionidae) studied using stereo videogrammetry. Journal of Experimental Biology, 208: 1321-1327.
  • Hollander, M., and D. A. Wolfe. 1973. Nonparametric statistical methods. John Wiley, New York, 503 pp.
  • Huffman, R. F., and O. W. Henson, Jr. 1993. Labile cochlear tuning in the mustached bat. 1. Concomitant shifts in biosonar emission frequency. Journal of Comparative Physiology A, 171: 725-734.
  • Ivanova, T., and A. Gueorguieva. 2004. Bats (Chiroptera, Mammalia) of the Eastern Rhodopes (Bulgaria and Greece): 1. Species diversity, zoogeography and faunal patterns. Pp. 907-927, in Biodiversity of Bulgaria. 2. Biodiversity of Eastern Rhodopes (Bulgaria and Greece) (P. Beron and A. Popov, eds.). Pensoft and National Museum of Natural History, Sofia, 952 pp.
  • Jones, G. 1995. Variation in bat echolocation: implications for resource partitioning and communication. Le Rhinolophe, 11: 53-59.
  • Jones, G. 1999. Scaling of echolocation call parameters in bats. The Journal of Experimental Biology, 202: 3359-3367.
  • Jones, G., and T. Kokurewicz. 1994. Sex and age variation in echolocation calls and flight morphology of Daubenton’s bats Myotis daubentonii. Mammalia, 58: 41-50.
  • Jones, G., and R. D. Ransome. 1993. Echolocation calls of bats are influenced by maternal effects and change over a lifetime. Proceedings of the Royal Society of London, 252B: 125-128.
  • Jones, G., and J. M. V. Rayner. 1989. Foraging behavior and echolocation of wild horseshoe bats Rhinolophus ferrumequinum and R. hipposideros (Chiroptera, Rhinolophidae). Behavioral Ecology and Sociobiology, 25: 183-191.
  • Jones, G., and J. M. V. Rayner. 1991. Flight performance, foraging tactics and echolocation in the trawling insectivorous bat Myotis adversus (Chiroptera: Vespertilionidae). Journal of Zoology (London), 225: 393-412.
  • Jones, G, T. Gordon, and J. Nightingale. 1992. Sex and age differences in the echolocation calls of the lesser horseshoe bat, Rhinolophus hipposideros. Mammalia, 56: 189-193.
  • Jones, G., M. Morton, P. M. Hughes, and R. M. Budden. 1993. Echolocation, flight morphology and foraging strategies of some West African hipposiderid bats. Journal of Zoology (London), 230: 385-400.
  • Jones, G., K. Sripathi, D. A. Waters, and G. Marimuthu. 1994. Individual variation in the echolocation calls of three sympatric Indian hipposiderid bats, and an experimental attempt to jam bat echolocation. Folia Zoologica, 43: 347-362.
  • Kazial, K. A., and W. M. Masters. 2004. Female big brown bats, Eptesicus fuscus, recognize sex from a caller’s echolocation signals. Animal Behaviour, 67: 855-863.
  • Kazial, K. A., S. C. Burnett, and W. M. Masters. 2001. Individual and group variation in echolocation calls of big brown bats, Eptesicus fuscus (Chiroptera: Vespertilionidae). Journal of Mammalogy, 82: 339-351.
  • Kingston, T., and S. J. Rossiter. 2004. Harmonic-hopping in Wallacea’s bats. Nature, 429: 654-657.
  • Kingston, T., G. Jones, A. Zubaid, and T. H. Kunz. 2000. Resource partitioning in rhinolophoid bats revisited. Oecologia, 124: 332-342.
  • Kingston, T., M. C. Lara, G. Jones, A. Zubaid, T. H. Kunz, and C. J. Schneider. 2001. Acoustic divergence in two cryptic Hipposideros species: a role for social selection? Proceedings of the Royal Society of London, 268B: 1381-1386.
  • Langeheinecke, E. J. 2000. Guidance behaviour and orientation reaction in commuting greater horseshoe bats (Rhinolophus ferrumequinum). Doctoral Thesis, Fakultät für Biologie, Universität Tübingen, Tübingen, 83 pp.
  • Leonard, M. L., and M. B. Fenton. 1984. Echolocation calls of Euderma maculatum (Vespertilionidae). Use of orientation and communication. Journal of Mammalogy, 65: 122-126.
  • Masters, W. M., K. A. S. Raver, and K. A. Kazial. 1995. Sonar signals of big brown bats, Eptesicus fuscus, contain information about individual identity, age and family affiliation. Animal Behaviour, 50: 1243-1260.
  • Metzner, W., S. Zhang, and M. Smotherman. 2002. Doppler-shift compensation behavior in horseshoe bats revisited: auditory feedback controls both a decrease and an increase in call frequency. The Journal of Experimental Biology, 205: 1607-1616.
  • Möhres, F. P. 1954. Zur Funktion der Nasenaufsätze bei Fledermäusen. Zeitschrift für vergleichende Physiologie, 34: 547-588.
  • Moss, C. F., D. Redish, C. Gounden, and T. H. Kunz. 1997. Ontogeny of vocal signals in the little brown bat, Myotis lucifugus. Animal Behaviour, 54: 131-141.
  • Neuhauser, M. 2004. Testing whether any of the significant tests within a table are indeed significant. Oikos, 106: 409-410.
  • Neuweiler, G. 1990. Auditory adaptations for prey capture in echolocating bats. Physiological Reviews, 70: 615-641.
  • Neuweiler, G., W. Metzner, U. Heilmann, R. Rübsamen, M. Eckrich, and H. H. Costa. 1987. Foraging behaviour and echolocation in the rufous horseshoe bat (Rhinolophus rouxii) of Sri Lanka. Behavioral Ecology and Sociobiology, 20: 53-67.
  • Obrist, M. K., M. B. Fenton, J. L. Eger, and P. A. Schlegel. 1993. What ears do for bats: A comparative study of pinna sound pressure transformation in Chiroptera. The Journal of Experimental Biology, 180: 119-152.
  • Ostwald, J. 1984. Tonotopical organization and pure tone response characteristics of single units in the auditory cortex of the greater horseshoe bat. Journal of Comparative Physiology, 155A: 821-834.
  • Palmeirim, J. M., and L. Rodrigues. 1993. The 2-minute harp trap for bats. Bat Research News, 34: 60-64.
  • Pearl, D. L., and M. B. Fenton. 1996. Can echolocation calls provide information about group identity in the little brown bat (Myotis lucifugus)? Canadian Journal of Zoology 74, 2184-2192.
  • Popov, V. V., and T. I. Ivanova. 2002. Comparative craniometrical analysis and distributional patterns of medium-sized horseshoe bats (Chiroptera: Rhinolophidae) in Bulgaria. Folia Zoologica, 51: 187-200.
  • Pye, J. D. 1979. Why ultrasound? Endeavour, 3: 57-63.
  • Pye, J. D. 1988. Noseleaves and bat pulses. Pp. 791-796, in Animal sonar: Processes and performance (P. E. Nachtigall and P. W. B. Moore, eds.). Plenum Press, New York, 862 pp.
  • Robinson, M. F. 1996. A relationship between echolocation calls and noseleaf widths in bats of the genera Rhinolophus and Hipposideros. Journal of Zoology (London), 239: 389-393.
  • Russo, D., G. Jones, and M. Mucedda. 2001. Influence of age, sex and body size on echolocation calls of Mediterranean and Mehely’s horseshoe bats, Rhinolophus euryale and R. mehelyi (Chiroptera: Rhinolophidae). Mammalia, 65: 429-436.
  • Schnitzler, H.-U. 1968. Die Ultraschall-Ortungslaute der Hufeisen-Fledermäuse (Chiroptera-Rhinolophidae) in verschiedenen Ortungssituationen. Zeitschrift für vergleichende Physiologie, 57: 376-408.
  • Schnitzler, H.-U. 1973. Control of Doppler shift compensation in the greater horseshoe bat, Rhinolophus ferrumequinum. Journal of Comparative Physiology, 82: 79-92.
  • Schnitzler, H.-U. 1983. Fluttering target detection in horseshoe bats. Journal of the Acoustical Society of America, 74: 31.
  • Schnitzler, H.-U., and E. K. V. Kalko. 2001. Echolocation by insect-eating bats. BioScience, 51: 557-569.
  • Schnitzler, H.-U., and J. Ostwald. 1983. Adaptation for the detection of fluttering insects by echolocation in horseshoe bats. Pp. 801-827, in Advances in vertebrate neuroethology (J. P. Ewert, R. R. Capranica, and D. J. Ingle, eds.) Plenum Press, New York, 1283 pp.
  • Schnitzler, H.-U., N. Suga, and J. A. Simmons. 1976. Peripheral auditory tuning for fine frequency analysis in the CF-FM bat, Rhinolophus ferrumequinum III. Cochlear microphonics and auditory nerve responses. Journal of Comparative Physiology, 106: 99-110.
  • Schnitzler, H.-U., C. F. Moss, and A. Denzinger, 2003. From spatial orientation to food acquisition in echolocating bats. Trends in Ecology and Evolution, 18: 386-394.
  • Schuller, G., and G. Pollak. 1979. Disproportionate frequency representation in the inferior colliculus of Doppler-compensating greater horseshoe bats: evidence for an acoustic fovea. Journal of Comparative Physiology, 132: 47-54.
  • Schuller, G., and N. Suga. 1976. Storage of Doppler-shift information in the echolocation system of the ‘CF-FM’-bat Rhinolophus ferrumequinum. Journal of Comparative Physiology, 105A: 9-14.
  • Siemers, B. M., and T. Ivanova. 2004. Ground gleaning in horseshoe bats: comparative evidence from Rhinolophus blasii, R. euryale and R. mehelyi. Behavioral Ecology and Sociobiology, 56: 464-471.
  • Siemers, B. M., and H.-U. Schnitzler. 2004. Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature, 429: 657-661.
  • Siemers, B. M., E. K. V. Kalko, and H.-U. Schnitzler. 2001. Echolocation behavior and signal plasticity in the Neotropical bat Myotis nigricans (Schinz, 1821) (Vespertilionidae): a convergent case with European species of Pipistrellus? Behavioral Ecology and Sociobiology, 50: 317-328.
  • Stebbings, R. E. 1968. Measurements, composition and behaviour of a large colony of the bat Pipistrellus pipistrellus. Journal of Zoology (London), 156:15-33.
  • Suga, N., H. Niwa, I. Taniguchi, and D. Margoliash. 1987. The personalized auditory cortex of the mustached bat: adaptation for echolocation, Journal of Neurophysiology, 58: 643-654.
  • Trappe, M., and H.-U. Schnitzler. 1982. Doppler shift compensation in insect-catching horseshoe bats. Naturwissenschaften, 69: 193.
  • Zar, J. H. 1999. Biostatistical analysis, 4th edition. Prentice Hall, Upper Saddle River, New Jersey, 663 pp.
  • Zaykin, D. V., L. A. Zhivotovsky, P. H. Westfall, and B. S. Weir. 2002. Truncated product method for combining P-values. Genetic Epidemiology, 22: 170-185.
  • Zhao, H. H., S. Y. Zhang, M. X. Zuo, and J. Zhou. 2003. Correlations between call frequency and ear length in bats belonging to the families Rhinolophidae and Hipposideridae. Journal of Zoology (London), 259: 189-195.

Uwagi

PL

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-71b16cc1-84d0-474b-beae-23d6b3b49bab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.