Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 2 |
Tytuł artykułu

Quercetin-4'-glucoside: a physiological inhibitor of the activities of dominant glutathione S-transferases in onion (Allium cepa L.) bulb

Warianty tytułu
Języki publikacji
The onion (Allium cepa L.) bulb has a high level of glutathione S-transferase (GST) activity, and it is a rich source of sulfur compounds as well as flavonoids. To investigate interactions between onion bulb GSTs and metabolites, we separated onion bulb GSTs (GSTa and GSTb as minor GSTs and GSTc, GSTd and GSTe as dominant GSTs) by DEAE-cellulose chromatography. In Western blot analysis with anti-CmGSTF1 antiserum, GSTc and GSTd fractions showed a thick band. A cDNA (AcGSTF1) corresponding to GSTc was immunoscreened with the same antiserum from an onion bulb cDNA library and its bacterial expression product was also subjected to investigation. Among the sulfur compounds, nonphysiological compounds, S-hexyl glutathione (GSH) and S-butyl GSH, showed strong inhibitory effects on 1-chloro-2,4-dinitrobenezene (CDNB)-conjugating activities of GSTa, GSTb and GSTe. However, physiological sulfur compounds, S-methyl GSH, S-propyl GSH, S-lactoyl GSH and S-ethyl-L-cysteine sulfoxide, had small or almost no inhibitory effects. Therefore, onion sulfur compounds might have the least possibility to be substantial inhibitors of onion GSTs. On the other hand, the activities of GSTc, GSTd and AcGSTF1 were strongly inhibited by flavonoids, quercetin, luteolin, apigenin and kaempferol. Ethylacetate (EtOAc) extract of onion bulb contained quercetin-40-glucoside as a major inhibitory substance. The strong inhibitory effects of quercetin-4'-glucoside on GSTc and GSTd as well as on AcGSTF1 (50% inhibitory concentration (IC₅₀): 9.5, 7.5 and 11.2 µM, respectively) along with its high concentration (226 µM) in the onion bulb indicates that quercetin-4'-glucoside is a physiological inhibitor of dominant GSTs in the onion bulb.
Słowa kluczowe
Opis fizyczny
  • Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
  • Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
  • Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
  • Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
  • Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
  • Ahmed MS, Ainley K, Parish JH, Hadi SM (1994) Free radical induced fragmentation of proteins by quercetin. Carcinogenesis 15:1627–1630. doi:10.1093/carcin/15.8.1627
  • Arabbi PR, Genovese MI, Lajolo FM (2004) Flavonoids in vegetable foods commonly consumed in Brazil and estimated ingestion by the Brazilian people. J Agric Food Chem 52:1124–1131. doi: 10.1021/jf0499525
  • Bartling D, Radzio R, Steiner U, Weiler EW (1993) A glutathione S-transferase with glutathione peroxidase activity from Arabidopsis thaliana. Eur J Biochem 216:579–586. doi:10.1111/j.1432-1033.1993.tb18177.x
  • Bilyk A, Cooper P, Sapers G (1984) Varietal differences in distribution of quercetin and kaempferol in onion tissue. J Agric Food Chem 32:274–276. doi:10.1021/jf00122a024
  • Booth J, Boyland E, Sims P (1961) An enzyme from rat liver catalyzing conjugation. Biochem J 79:516–524
  • Boyer TD, Vessey DA (1987) Inhibition of human cationic glutathione S-transferases by nonsubstrate ligands. Hepatology 7:843–848. doi:10.1002/hep.1840070509
  • Cummins I, Cole DJ, Edwards R (1997) Purification of multiple glutathione transferases involved in herbicide detoxification from wheat (Triticum aestivum L.) treated with the safener fenchlorazole-ethyl. Pestic Biochem Physiol 59:35–49. doi: 10.1006/pest.1997.2308
  • Cummins I, O’Hagen D, Jablonkai I, Cole DJ, Hehn A, Werckreichhart D et al (2003) Cloning, characterization and regulation of a family of phi class glutathione transferases from wheat. Plant Mol Biol 52:591–603. doi:10.1023/A:1024858218804
  • Dean JV, Devarenne TP, Lee IS, Orlofsky LE (1995) Properties of a maize glutathione S-transferase that conjugates coumaric acid and other phenylpropanoids. Plant Physiol 108:985–994
  • Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and health. Trends Plant Sci 5:193–198. doi:10.1016/S1360-1385(00) 01601-0
  • Fossen T, Pedersen AT, Andersen ØM (1998) Flavonoids from red onion (Allium cepa). Phytochemistry 47:281–285. doi:10.1016/ S0031-9422(97)00423-8
  • Fujita M, Hossain MZ (2003) Molecular cloning of cDNAs for three tau-type glutathione S-transferases in pumpkin (Cucurbita maxima) and their expression properties. Physiol Plant 117:85–92. doi:10.1034/j.1399-3054.2003.1170111.x
  • Fujita M, Adachi Y, Hanada Y (1994) Preliminary characterization of glutathione S-transferases that accumulate in callus cells of pumpkin (Cucurbita maxima Duch.). Plant Cell Physiol 35:275–282
  • Gronwald JW, Plaisance KL (1998) Isolation and characterization of glutathione S-transferase from sorghum. Plant Physiol 117:877–892. doi:10.1104/pp.117.3.877
  • Hayes JD, Mantle TJ (1986) Inhibition of hepatic and extrahepatic glutathione S-transferases by primary and secondary bile acids. Biochem J 233:407–415
  • Hossain MD, Rohman MM, Fujita M (2007a) Comparative investigation of glutathione S-transferases, glyoxalase-I and alliinase activities in different vegetable crops. J Crop Sci Biotechnol 10:21–28
  • Hossain MD, Suzuki T, Fujita MA (2007b) Preliminary Approach to identify the physiological substrates of pumpkin glutathione S-transferase through inhibition studies. In: McConchie R, Rogers G (eds) Proceedings of 3rd international symposium on cucurbits, vol 731. Acta Hort ISHS, pp 217–221
  • Jones MG, Hughes J, Tregova A, Milne J, Tomsett AB, Collin HA (2004) Biosynthesis of flavor precursors of onion and garlic. J Exp Bot 55:1903–1918. doi:10.1093/jxb/erh138
  • Lachman J, Proněk D, Hejtmánková A, Dudjak J, Pivec V, Faitová K (2003) Total polyphenol and main flavonoid antioxidants in different onion (Allium cepa L.) varieties. Hortic Sci (Prauge) 30:142–147
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 227:680–685. doi: 10.1038/227680a0
  • Lancaster JE, Kelly KE (1983) Quantitative analysis of the S-alk(en)yl-L-cysteine sulphoxides in onion (Allium cepa L.). J Sci Food Agric 34:1229–1235. doi:10.1002/jsfa.2740341111
  • Lancaster JE, Shaw ML (1989) Guma-glutamyl peptides in the biosynthesis of S-alkyl-L-cysteine sulphoxides (flavour precursors) in Allium. Phytochemistry 28:455–460. doi:10.1016/0031-9422(89)80031-7
  • Leighton T, Ginther CH, Fluss L, Harter W, Cansado J, Notario V (1992) Molecular characterization of quercetin and quercetin glycosides in Allium vegetables: their effects on malignant cell transformation. In: Huang MT, Ho CT, Lee CY (eds) Phenolic compounds in foods and their effects on health II, ACS Symposium Series, vol 507. American Chemical Society, Washington DC, pp 220–238
  • Mannervic B, Danielson UH (1988) Glutathione S-transferases—structure and catalytic activity. CRC Crit Rev Biochem 23:283–337. doi:10.3109/10409238809088226
  • Marrs KA, Alfenito MR, Lloyd AM, Walbot VA (1995) Glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375:397–400. doi:10.1038/375397a0
  • Masamoto Y, Ando H, Murata Y, Shimiishi Y, Tada M, Takahat K et al (2003) Mushroom tyrosinase inhibitory activity of esculetin isolated from seeds of Euforbia lathyris L. Biosci Biotechnol Biochem 67:631–634. doi:10.1271/bbb.67.631
  • Mosialou E, Morgenstern R (1989) Activity of rat liver microsomal glutathione transferases towards products of lipid peroxidation. Arch Biochem Biophys 275:289–294. doi:10.1016/0003-9861 (89)90375-5
  • Moskaug JO, Carlsen H, Myhrstad M, Blomhoff R (2004) Molecular imaging of the biological effects of quercetin and quercetin rich foods. Mech Ageing Dev 125:315–324. doi:10.1016/j.mad. 2004.01.007
  • Mueller LA, Godman CD, Silady RA, Walbot V (2000) AN9, a petunia glutathione S-transferases required for anthocyanin sequestration, is a flavonoid binding protein. Plant Physiol 123:1561–1570. doi:10.1104/pp.123.4.1561
  • Mulder GJ, Ouwerkerk-Mahadevan S (1997) Modulation of glutathione conjugation in vivo: how to decrease glutathione conjugation in vivo or in intact cellular systems in vitro. Chem Biol Interact 105:17–34. doi:10.1016/S0009-2797(97)00038-0
  • Ong KL, Clark AC (1986) Inhibition of rat liver glutathione S-transferases by glutathione conjugates and corresponding L-cysteines and mercapturic acids. Biochem Pharmacol 35:651–654. doi:10.1016/0006-2952(86)90362-X
  • Rhodes M, Price K (1996) Analytical problems in the study of flavonoid compounds in onions. Food Chem 57:113–117. doi: 10.1016/0308-8146(96)00147-1
  • Stoll A, Seebeck E (1951) Chemical investigations of alliin, the specific principle of garlic. Adv Enzymol 11:377–400
  • Walbot V, Mueller LA, Silady RA, Goodman CD (2000) Do glutathione S-transferases act as enzymes or carrier proteins for their natural substrates? In: Brunold C et al (eds) Sulfur nutrition and sulfur assimilation in higher plants. Paul Haupt, Bern, pp 155–165
  • Zhang K, Das NP (1994) Inhibitory actions of plant polyphenols on rat liver glutathione S-transferases. Biochem Pharmacol 63:2063–2068. doi:10.1016/0006-2952(94)90082-5
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.