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Summary

Frequently in practice the estimation of polynomialhich describe course of changes for
a studied feature in a given time interval can igmificantly disturbed by some concomitant
variables with values changing in time. The sitmativhere values of concomitant variables in
successive time points are the same for all expariah units is considered. The influence of these
variables on estimation of polynomials by two melidPotthoff-Roy’s and iterative is examined.
The investigation is carried out on the data oletdiby computer simulation.
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1. Introduction

The course of change of a studied feature in tionedifferent groups of
units can be described using the known growth corethod given by Potthoff
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and Roy (1964). Often different variables, callethaomitant variables, whose
values changes in time can have influence on slutkature values. For
example: if a studied feature is the growth of fdan time, then concomitant
variables can be the rainfall value and the aiperature in suitable time points.
In the case considered here all values of thosmblas are the same for all
plants.

Different models which take concomitant variablesoi account were
presented by Wesotowska—Janczarek (2009). One edetimodels, which
assumes the same influence of concomitant varidbtesl experimental units,
was provided in the work by Wesotowska—Janczarek s (1996). It also
presents an iterative method of parameter estimatithat model.

It is interesting whether influence of concomitaatiables ought to be ever
taken into consideration while estimation the ceur$ feature changes or the
influence of concomitant variable can be omittedm& discussion about this
problem was presented by Bochniak and Wesotowskazdeek (2010) in the
paper where the influence of degree of variationasfcomitant variables values
in time on the conformity of estimated functiortioe one was studied.

On the base of simulated data, where differenugnfte of concomitant
variables was assumed, comparison of results dhéf6tRoy’s and iterative
methods was carried out.

2. Considered models and suitable estimation methed

The first model to be presented is Potthoff ang’®¢1964) one that does
not contain concomitant variables. It is a multighle model presented in the
following form:

Y = ABT +E, (2.1)

whereY is nx p— matrix of observations of feature arexperimental units in

p time points,A is nxa— known matrix which divides experimental units on
agroup,B — is ax - matrix of unknown coefficients in searched polyma

growth curves ofg—1 degree,T is % p matrix that include the successive
powers of time points from O tp-1 (it is Vandermonde’s matrix) that defines
internal structure of observations alBds a nx p matrix of random errors. If
all units are homogeneous thén=J , whereJ, is a vector of ones, but if

observations are subject to two way classificatiten matrixA is a non full
rank. To continue our considerations in this pap&trix A is taken as in a one
way classification without the column of ones.
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This model is considered under assumption that rofvsnatrix Y are

uncorrelated, but columns are correlated with commovariance matrixX .
pp

Additionally, a matrix of observations is a multiie normally distributed.
This assumption can be presentedYas- N (ABT,l X), wherel  is
' PP

a unit matrix of n dimension (see Gupta and Nat@99, p. 55).

Estimators of parameters in this model that ardfictents in polynomials
in matrix B and covariance matriX obtained by maximum likelihood method
(Kshirsagar, 1988) are given in following form:

B=(A'A)*AYZAT(TE?T)™ (2.2)

and

- 1 i 1 1A

E==vI, -AAA)AY 2.3)
n

One of the growth curve models with concomitantialdes, when the
values ofs concomitant variables are the same for all expemiad units, but
each of the variables values are different in ol time points was given by
Wesotowska—Janczarek and Fus (1996) in the follgWénm:

Y =ABT +J y'X +E, (2.4)

where the matrice¥, A, B, T andE are the same as in the model (2X)is
sx p matrix of values of thesg variables in successiyetime points,y is a
vector ofs regression coefficients at concomitant variablésjs a vector oh
ones andk is an x p matrix of random errors.

Under the assumption of matrix variate normal tistion of Y denoted by

Y ~N, ,(ABT +J v'X,I,0X) and (px p)>0 assumptions estimators
of parameters in this model obtained by maximunelitfood method were

given in following form:
nZ = (Y -ABT -J,7'X)'(Y ~ABT -J,¥'X)
By =(A'A) A'(Y -3 ¥X)E7T(TZ ) ! 2.5)
Vi =[30Y —JLAAA) AYEIT(TET) M TIZ X R,
Ry =[NXZ7X' = JA(A'A) A XZT'(TZ ) T X
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The values of these estimators can be calculatethédyiterative method
where in the first step the following form of a mmat will be taken

nE=Y'l,-AA'A)TATY .

We are interested in the answer to the questionnwthe concomitant
variables must be considered in the model and ey can be omitted. This
is examined by comparison the fitting of estimapediynomials given by two
mentioned method with assumed ones. The invegiigafpresented here were
undertaken using the data obtained by a computailaiion. Details about the
method of simulation is presented in next parhid paper.

3. Computer simulation

The computer simulation was conducted using owrtgaores and some
built—in functions programmed iMatlab. The values of observations obtained
in the real experiment were taken as the basishircomputer simulation. In
the experiment described by Wesolowska—Janczarek Fus (1996) the
yielding of 16 raspberry varieties was examined r@h&lues of meteorological
elements such as air temperature, sunshine andalraiwere taken as
concomitant variables.

The values of parameters, such as covariance majririatrix B of
polynomials coefficient, averages and standard afievis of concomitant
variables given by matriX which appear in the models given by equations
(2.1) and (2.4), were estimated from original data.

In the second step on the basis of estimators leédclin the first step new
polynomials (exactly coefficients matr®) representing different varieties were
generated assuming similar course of yielding.tNex such polynomials new
values (10 000 times) were generated for requisgdrpeters: positive defined
matrix X, values of matrixX containing information about concomitant
variables, vectoy of regression coefficients and finally observatioatrix Y

by rows from distribution N, ,(ABT +J,y'X; | ,JX). Estimators of

polynomials were next calculated and compared asgumed ones.

Such simulation was repeated for different varigbiin concomitant
variables values (matriX) and in observation matriX (changed by matrig).
The influence of concomitant variables was changddring the computer
simulation aiming to establish cases in which tigeamethod gives better
estimators than Potthoff-R@ymethod.

Arrangement of time points and matéxdividing experimental units into
groups were kept unchanged in comparison to theluwsziad experiment. The
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values of X or Y were generated assuming similarity to the valuesnf
experimental data.

4. Results

The results obtained in all conducted simulations similar to those
presented in the examples in further part of pap#rthe analysis are shown
using the same 16 polynomials assumed in simuktidrhe shapes of
polynomials are shown on fig. 1. As Bochniak ands@ewska—Janczarek
(2010) suggested the shape of polynomial has afsgence on estimation, so
the most (variety 18 and the least bent (variety)9polynomials are specially
marked with wider lines.

Examined feature

1 6 11 16 21 26

Time [day]

Fig. 1. Exemplary polynomials assumed in simulation

For such polynomials new daté,(X, X) was generated 10 000 times using
different random regression vectoxs which determine the influence of
concomitant variables. The values of mentioned rpatars were similar to
original experimental data. Estimators given by2)2and (2.5) were used to
calculate coefficients of matri, and obtained polynomials were compared
with assumed ones. Graphical comparison of estimator the first 100
iterations of simulation given by both methods lissented on fig.2. Dark line
correspond to assumed polynomial for variety 15t Bghter lines show the
first 100 estimators of the given polynomial frornh 20 000 repetitions of
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simulation. It is visible that polynomials given [Bothoff-Roy’'s method is
much more scattered from assumed line.

Examined feature

5 10 15 20 25
Time [day

Examined feature

g 10 15 20 25
Time [daw]

Fig. 2. Comparison of polynomials estimated by iteraftogp) and Potthoff-Rdg (bottom)
methods with assumed growth curve

Fig. 3 presents an exemplary generated polynomiaddme variety, curve
with considered concomitant variables, generatestmfations for 4 replication
and finally estimators of polynomial growth cunedaulated by Potthoff—-Roy’s
and iterative methods. In this case estimated pofyal by iterative method is
closer to assumed one than given by Potthoff-Rmgthod. Iterative method
gives larger values for variety polynomial and cumiant variables cause
lowering cumulative curve to fit to observations.dther cases the situation is
varying.



VALUATION OF INFLUENCE OF CONCOMITANT VARIABLES ... 33

pralytornial
—&— PR
" |terative
Iterative+variables
abservations

Examined feature

3 10 15 20 25
Time [day]

Fig. 3. Generated observations and estimations of assaured by iterative and Potthoff-Roy’s
methods for example simulation

For each of 10000 repetitions of simulation twolypomials were
estimated using Potthoff-Roy’s method and iteratwe. For each estimated
polynomials relative error, which was averaged ih tane points, was
calculated using following formula:

1 2]Q;®)-R)

P t=1 I:)| (t) (4.1)

|J

where
P, — assumed polynomial forth variety,
Q; — estimated polynomial fo-th variety ang-th repetition,
p — number of time points.

Polynomials estimated by both methods were compased) formula (4.1)
and it was counted which method gives most freduddtter results. Fig. 4
presents percentages (vertical axis) in which titeramethod gives better
estimators of polynomials in dependence of relatteenbined influence of
concomitant variables on assumed polynomials.
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Fig. 4. Percentages of cases in which iterative metheekdietter results with dependency of
combinedinfluence of concomitant variables (for all 16 ‘edies)

Because assumed polynomials has different maximataey for every
repetition of simulation (with different values obncomitant values) and for
each polynomial the proper relative combined inflte2e of concomitant
variables was calculated as average value obtainecdach time point
(horizontal axis). This influence shows how manycpatages concomitant
variables increased (positive influence) or de@ddsaegative influence) values
of assumed polynomials. The calculation of the coedb influence of
concomitant variableg'X was done with rounding it to precision of 5%. The

two wider lines correspond to two polynomials ftvosen varieties which are
specially marked of fig.1. As one can see theyrdatee limits for all other lines
which are connected with polynomials laying betwterse extreme ones.

In considered situation, the estimators given bigieti—Roy’s method are
better than iterative ones in the cases when infleef concomitant variables is
small — approximately in 60% cases if there is mmlgined influence of
concomitant variables. If combined influence of cmmitant variables reaches
approximately 10% both methods give better estisatwith the same
frequency. Iterative method is better if influenaeconcomitant variables is
larger (more than 10% of influence). In discussatukation if relative
influence of concomitant values exceed 20-25% cfumed polynomials
values, then in 90% cases estimators given bytikerenethod is better fitted to
assumed polynomials. It can also be seen thatadety 1", which is more
diverse in time than variety"9iterative method gives faster better results with
increasing influence of concomitant values. Somehthined numbers of cases
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in which specific method gives better estimatioa ksted in Table 1. Positive
and negative influence is almost symmetrical.

Table 1. Number of cases in which chosen method givegbettimation of assumed polynomial

Number of cases
Variety 9 Variety 15
Variables| Iterative PR Iterative PR
influence| better better better better
-30% 393 26 340 3
—25% 368 33 492 7
—-20% 401 93 587 25
-15% 360 121 659 69
-10% 292 195 646 194
-5% 244 317 482 415
0% 211 309 348 557
5% 256 271 518 391
10% 318 199 618 167
15% 376 116 633 64
20% 351 63 582 29
25% 366 48 480 3
30% 354 24 358 1

In view of facts described by Bochniak and Wesokawslanczarek (2010)
the iterative method has bad properties if vangbof concomitant variables
values i.e. the elements of matd hassmall differences in successive time
points. Fig. 5 presents similar chart examiningluefice of concomitant
variables but separate lines corresponds to stioofawith different variability
of X. Standard deviations of generated dgtavas decreased or increased in
comparison to the ones calculated for original erpental data by
multiplication by following values: a) 0.1 — theakt diversity; b) 0.5; ¢) 1 —
diversity as in the original data; d) 2; e) 5 — ¢ineatest diversity of concomitant
variables values. Thé"@&and 1%' varieties are only drawn for easier observation
and only positive influence is shown because negatne is symmetrical. It can
be easily seen that the lesser variability in comtant variables values in time,
the less exact estimation of the assumed curvéeniterative method with
regard to the fixed regression dependence on oaitenat variables i.e. is fixed
elements in vectoy.



36 ANDRZEJ BOCHNIAK, MIROSt AWA WESOLOWSKA-JANCZAREK

100% Variety 9

oo ,./PJ';D/*—V /‘ W
80% 4 / //
70%

/
60%
50% / / x—// —%—X01
. 7 N 7 s

——X1

s od ¥ e
20% / W —+—X5
10% /

0% (/x/)\?—(

T T T T T T T T
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percent of cases with iterative
method with better estimation

Influence of concomitant variables

100%

S aralVasa w7 Variety 15

w7 Ay
- [/ N
s L] v =01

\W) —o—X05
40% ——X1
—a—X2

9
30% X5
20% -

10% -

Percent of cases with iterative
method with better estimation

0%

T T T T T T T T T
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Influence of concomitant variables

Fig. 5. Percentages of cases in which iterative metheekdietter results with dependency of
influence of concomitant variables and differertedsity ofX

The influence of variability of generated obserativalues (matrixy) in
time was also examined. This diversity was changedenerating smaller or
greater elements in covariance mafixThe results of this study is shown on
fig.6 where this time lines corresponds for difféare€ovariance matrix. This
matrix was generated under assumption of specifior dor single generated
element ofY. The standard deviation of this error is assumedd,; 0.2; 0.3;
0.4 and 0.5. Values of concomitant values has #mesdiversity as in the
original data. Also charts only for the two extrewagieties are shown here. The
lesser variability in polynomials values in timeiaases exactness of estimation
of the assumed curve in the iterative method.
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Fig. 6. Percentages of cases in which iterative methoelsgbetter results with dependency of
influence of concomitant variables and differerenisity of

5. Conclusions

The paper presents the results obtained in stwdiésh aim to bring the
solution of the problem if values of concomitantigbles must always be
considered and what does the precision of growthecestimation depend on.
The conclusions based on the studies that havedaggad out so far are
following:

1) Growth curves estimation using iterative methotbéter than Potthoff—
Roy’'s method if influence of concomitant variablegicreases

(Fig. 4).
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2) The exactness of growth curves estimation usingatitee method is
increased with enlarged difference between con@mniariables values
in successive time points (Fig. 5).

3) If concomitant variables values in successive tpomts are constant or
little diverse then iterative method should notused because of very bad
behaviour in some cases (Bochniak and Wesotowskazdeek 2010,
Fig. 5 X 0.1). Unfortunately the exact reason @ gituation has not been
solved yet.

4) If polynomial values in successive time points strengly differentiated,
then exactness of curve estimation obtained bwtiter method is better
(variety 9" and 1%'in Fig. 4, Fig.5, Fig.6).

5) lIterative method estimation in comparison to PdftHeoy’s method
enlarges its precision if values of observations VYarieties are less
diverse (Fig. 6).

6) Further studies are necessary to determine thearmamivalue of variance
of concomitant variables values in time, and pdgstbo omit these
variables in growth curve analysis.
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