PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 04 |

Tytuł artykułu

Changes in the root proteome of Triticosecale grains germinating under osmotic stress

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Osmotic stress causes many adverse symptoms in plants, which include, for example, growth limitation and decrease or even absence of yield. Proteomic analyses of plant responses to stressors could lead to the introduction of crops with high resistance to osmotic stress. Such plants would be characterized by high yield even under unfavorable environmental conditions. In this article we describe changes in the protein profiles occurring in response to mild and moderate osmotic stress in triticale roots. Analysis of the protein profiles of these roots showed an increased abundance of 14 and a decreased abundance of 11 proteins under mild osmotic stress conditions while a moderate osmotic stress caused an increased abundance of 18 and a decreased abundance of 33 proteins. Twenty-five proteins, whose quantity altered under stress were identified using MALDI-TOF mass spectrometry. The identified proteins were classified into the categories of proteins associated with: defense mechanisms, metabolism, transcription, cell structure, protein synthesis, transport and signal transduction. The functions of identified proteins were discussed in relation to osmotic stress. Some of the identified proteins may be responsible for the adaptation of plants to adverse conditions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

04

Opis fizyczny

p.825-835,fig.,ref.

Twórcy

autor
  • Department of Biochemistry, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1 A, 10-719 Olsztyn, Poland
autor
  • Department of Biochemistry, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1 A, 10-719 Olsztyn, Poland
autor
  • Department of Biochemistry, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1 A, 10-719 Olsztyn, Poland

Bibliografia

  • Alvim FC, Carolino SMB, Cascardo JCM, Nunes CC, Martinez CA, Otoni WC, Fontes EPB (2001) Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol 126:10420–11054. doi:10.1104/pp.126.3.1042
  • Amin M, Elias SM, Hossain A, Ferdousi A, Rahman MS, Tuteja N, Seraj ZI (2012) Over-expression of a DEAD-box helicase, PDH45, confers both seedling and reproductive stage salinity tolerance to rice (Oryza sativa L.). Mol Breed 30:345–354. doi:10.1007/s11032-011-9625-3
  • Badowiec A, Swigonska S, Weidner S (2013) Changes in the protein patterns in pea (Pisum sativum L.) roots under the influence of long- and short-term chilling stress and post-stress recovery. Plant Physiol Biochem 71:315–324. doi:10.1016/j.plaphy.2013.08.001
  • Bargmann BO, Munnik T (2006) The role of phospholipase D in plant stress responses. Curr Opin Plant Biol 9:515–522. doi:10.1016/j.pbi.2006.07.011
  • Bevan M, Bansroft I, Bent E, Love K, Goodman H, Dean C et al (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488. doi:10.1038/35140
  • Biswas GCG, Ransom C, Sticklen M (2006) Expression of biologically active Acidothermus cellulolyticus endoglucanase in transgenic maize plants. Plant Sci 171:617–623. doi:10.1016/j.plantsci.2006.06.004
  • Brosowska-Arendt W, Weidner S (2011) Effect of osmotic stress on the formation of a population of polysomes and their stability in pea (Pisum sativum L.) seeds. Acta Physiol Plant 33:1475–1482. doi:10.1007/s11738-010-0686-4
  • Budak H, Akpinar BA, Unver T, Turktas M (2013) Proteome changes in wild and modern wheat leaves upon drought stress by twodimensional electrophoresis and nanoLC-ESI-MS/MS. Plant Mol Biol. doi:10.1007/s11103-013-0024-5
  • Cairns JRK, Esen A (2010) B-glucosidases. Cell Mol Life Sci 67:3389–3405. doi:10.1007/s00018-010-0399-2
  • Chapman KD (1998) Phospholipase activity during plant growth and development and in response to environmental stress. Trends Plant Sci 3:419–425. doi:10.1016/S1360-1385(98)01326-0
  • Cho YH, Yoo SD, Sheen J (2007) Glucose signaling through nuclear hexokinase1 complex in Arabidopsis. Plant Signal Behav 2:123–124. doi:10.1016/j.cell.2006.09.028
  • Chung E, Cho CW, Yun BH, Choi HK, So HA, Lee SW, Lee JH (2009) Molecular cloning and characterization of the soybean DEAD-box RNA helicase gene induced by low temperature and high salinity stress. Gene 443:91–99. doi:10.1016/j.gene.2009.05.005
  • Dani V, Simon WJ, Duranti M, Croy RRD (2005) Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics 5:737–745. doi:10.1002/pmic.200401119
  • Dhugga KS, Tiwari SC, Ray PM (1997) A reversibly glycosylated polypeptide (RGP1) possibly involved in plant cell wall synthesis: purification, gene cloning, and trans-Golgi localization. Proc Natl Acad Sci USA 94:7679–7684. doi:10.1073/pnas.94.14.7679
  • El Midaoui M, Serieys H, Griveau Y, Benbella M, Talouizte A, Bervillé A, Kaan F (2003) Effects of osmotic and water stresses on root and shoot morphology and seed yield in sunflower (Helianthus annuus L.) genotypes bred for Morocco or issued from introgression with H. argophyllus T. & G. and H. debilis Nutt. Helia 38:1–16. doi:10.2298/HEL0338001M
  • Espartero J, Pintor-Toro JA, Pardo JM (1994) Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress. Plant Mol Biol 25:217–227. doi:10.1007/BF00023239
  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2002) Proteomics of Arabidopsis seeds germination: a comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol 129:823–837. doi:10.1104/pp.002816
  • Ge P, Ma C, Wang S, Gao L, Li X, Guo G, Ma W, Yan Y (2012) Comparative proteomic analysis of grain development in two spring wheat varieties under drought stress. Anal Bioanal Chem 402:1297–1313. doi:10.1007/s00216-011-5532-z
  • Geilfus CM, Zörb C, Neuhaus C, Hansen T, Lüthen H, Mühling KH (2011) Differential transcript expression of wall-loosening candidates in leaves in maize cultivars differing in salt resistance. J Plant Growth Regul 30:387–395. doi:10.1007/s00344-011-9201-4
  • Ghosh AK, Datta PK, Jacob ST (1997) The dual role of helix- loophelix-zipper protein USF in ribosomal gene transcription in vivo. Oncogene 14:589–594. doi:10.1038/sj.onc.1200866
  • Görg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 12:3665–3685. doi:10.1002/pmic.200401031
  • Grillo MA, Colombatto S (2008) S-adenosylmethionine and its products. Amino acids 34:187–193. doi:10.1007/s00726-007-0500-9
  • Hermosa R, Botella L, Keck E, Jimenéz JÁ , Montero-Barrientos M, Arbona V, Gómez-Cadenas A, Monte E, Nicolás C (2011) The overexpression in Arabidopsis thaliana of Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses. J Plant Physiol 168:1295–1302. doi:10.1016/j.jplph.2011.01.027
  • Hidese R, Mihara H, Kurihara T, Esaki N (2011) Escherichia coli dihydropyrimidine dehydrogenase is a novel NAD-dependent heterotetramer essential for the production of 5,6-dihydrouracil. J Bacteriol 193:989–993. doi:10.1128/JB.01178-10
  • Hochstenbach F, Klis FM, Ende H, Donselaar E, Peters PJ, Klausner RD (1998) Identification of a putative alpha-glucan synthase essential for cell wall construction and morphogenesis in fission yeast. Prot Natl Acad Sci USA 95:9161–9166. doi:10.1073/pnas.95.16.9161
  • Hu DG, Wang SH, Luo H, Ma QJ, Yao YX, You CX, Hao YJ (2012) Overexpression of MdVHA-B, a V-ATPase gene from apple, confers tolerance to drought in transgenic tomato. Sci Hortic 145:94–101. doi:10.1016/j.scienta.2012.08.010
  • Huber DJ, Nevins DJ (1981) Partial purification of endo- and exo-β-D-glucanase enzymes from Zea mays L. seedlings and their involvement in cell-wall autohydrolysis. Planta 151:206–214. doi:10.1007/BF00395171
  • Jasińska Z, Kotecki A (2003) Szczegółowa uprawa roślin. AR, Wrocław, pp 164–165
  • Jiang Y, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25. doi:10.1186/1471-2229-6-25
  • Jiang Y, Yang B, Harris NS, Deyholos MK (2007) Proteomic comparative analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot 58:3591–3607. doi:10.1093/jxb/erm207
  • Jost W, Baur A, Nick P, Reski R, Gorr G (2004) A large plant beta-tubulin family with minimal C-terminal variation but differences in expression. Gene 340:151–160. doi:10.1016/j.gene.2004.06.009
  • Kim HD, Lee JY, Kim J (2005) Erk phosphorylates threonine 42 residue of ribosomal protein S3. Biochem Biophys Res Commun 333:110–115. doi:10.1016/j.bbrc.2005.05.079
  • Kok-Jacon GA, Ji Q, Vincken JP, Visser RGF (2003) Towards a more versatile a-glucan biosynthesis in plants. J Plant Physiol 160:765–777. doi:10.1078/0176-1617-01028
  • Kosová K, Vitámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J Proteomics 74:1301–1322. doi:10.1016/j.jprot.2011.02.006
  • Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283:34197–34203. doi:10.1074/jbc.M806337200
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0
  • Leah R, Kigel J, Svendsen I, Mundy J (1995) Biochemical and molecular characterization of a barley seed β-glucosidase. J Biol Chem 270:15789–15797. doi:10.1074/jbc.270.26.15789
  • Legocka J, Kluk A (2005) Effect of salt and osmotic stress on changes in polyamine content and arginine decarboxylase activity in Lupinus luteus seedlings. J Plant Physiol 162:662–668. doi:10.1016/j.jplph.2004.08.009
  • Libusová L, Sulimenko T, Janisch R, Hozák P, Dráber P (2005) Distinct localization of a beta-tubulin epitope in the Tetrahymena thermophila and Paramecium caudatum cortex. Protoplasma 225:157–167. doi:10.1007/s00709-005-0097-3
  • Liu B (2011) The plant cytoskeleton. Springer, New York, pp 3–4 7
  • Ma T, Chen R, Yu R, Zeng H, Zhang D (2009) Differential global genomic changes in rice root in response to low-, middle- and high-osmotic stresses. Acta Physiol Plant 31:773–785. doi:10.1007/s11738-009-0291-6
  • Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant 43:491–500. doi:10.1023/A:1002873531707
  • Mohammadi M, Kav NNV, Deyholos MK (2007) Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsives genes. Plant Cell Environ 30:630–645. doi:10.1111/j.1365-3040.2007.01645.x
  • Mohammadi PP, Moieni A, Hiraga S, Komatsu S (2012a) Organspecific proteomic analysis of drought-stressed soybean seedlings. J Proteomics 75:1906–1923. doi:10.1016/j.jprot.2011.12.041
  • Mohammadi PP, Moieni A, Komatsu S (2012b) Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress. Amino Acids. doi:10.1007/s00726-012-1299-6
  • Munnik T, Meijer HJG (2001) Osmotic stress activates distinct lipid and MAPK signalling pathways in plants. FEBS Lett 498:172–178. doi:10.1016/S0014-5793(01)02492-9
  • Munnik T, Meijer HJG, Riet B, Hirt H, Frank W, Bartels D, Musgrave A (2000) Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant J 22:147–154. doi:10.1046/j.1365-313x.2000.00725.x
  • Nakamura T, Muramoto Y, Yokota S, Ueda A, Takabe T (2004) Structural and transcriptional characterization of salt-responsive gene encoding putative ATP-dependent RNA helicase in barley. Plant Sci 167:63–70. doi:10.1016/j.plantsci.2004.03.001
  • Neuhoff A, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262. doi:10.1002/elps.1150090603
  • O’Farrel PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 10:4007–4021
  • Oliveira L (1982) The development of chloroplasts in root meristematic tissue of Secale cereale L. seedlings. New Phytol 91:263–275. doi:10.1111/j.1469-8137.1982.tb03311.x
  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265. doi:10.1007/s00299-005-0972-6
  • Quados A (2010) Effect of salt stress on plant growth and matabolism of bean plant Vicia faba (L.). J Saudi Soc Agric Sci 10:7–15. doi:10.1016/j.jssas.2010.06.002
  • Qyang Y, Luo X, Lu T, Ismail PM, Krylov D, Vinson C, Sawadogo M (1999) Cell-type dependent activity of the ubiquitous transcription factor USF in cellular proliferation and transcriptional activation. Mol Cell Biol 19:1508–1517
  • Rakha A, Åman P, Andersson R (2011) Dietary fiber in triticale grain: variation in content, composition and molecular weight distribution of extractable components. J Cereal Sci 54:324–331.doi:10.1016/j.jcs.2011.06.010
  • Rao KVM, Raghavendra AS, Janardhan Reddy K (2006) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, p 41
  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202. doi:10.1016/j.jplph.2004.01.013
  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crop Res 76:199–219. doi:10.1016/S0378-4290(02)00040-0
  • Sang Y, Zheng S, Li W, Huang B, Wang X (2001) Regulation of plant water loss by manipulating the expression phospholipase Da. Plant J 28:135–144. doi:10.1046/j.1365-313X.2001.01138.x
  • Sarkar NK, Kim YK, Grover A (2009) Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 10:393. doi:10.1186/1471-2164-10-393
  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal Chem 68:850–858. doi:10.1021/ac950914h
  • Slama I, Ghnaya T, Hessini K, Messedi D, Savouré A, Abdelly C (2007) Comparative study of the effects of mannitol and PEG osmotic stress on growth and solute accumulation in Sesuvium portulacastrum. Environ Exp Bot 61:10–17. doi:10.1016/j.envexpbot.2007.02.004
  • Sobhanian H, Aghaei K, Komatsu S (2011) Changes in plant proteome resulting from salt stress: toward the creation of salttolerant crops? J Proteomics 74:1323–1337. doi:10.1016/j.jprot.2011.03.018
  • Song Y, Zhang C, Ge W, Zhang Y, Burlingame AL, Guo Y (2011) Identification of NaCl stress-responsive apoplastic proteins in rice shoot stems by 2D-DIGE. J Proteomics 74:1045–1067. doi:10.1016/j.jprot.2011.03.009
  • Swigonska S, Weidner S (2013) Proteomic analysis of response to longterm continuous stress in roots of germinating soybean seeds. J Plant Physiol 170:470–479. doi:10.1016/j.jplph.2012.11.020
  • Tamura T, Hara K, Yamaguchi Y, Koizumi N, Sano H (2003) Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiol 131:454–462. doi:10.1104/pp.102.011007
  • Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 71:391–411. doi:10.1016/j.jprot.2008.07.005
  • Tohver M, Kann A, Ta¨ht R, Mihhalevski H, Hakman J (2005) Quality of triticale cultivars suitable for growing and bread-making in northern conditions. Food Chem 89:125–132. doi:10.1016/j.foodchem.2004.01.079
  • Toorchi M, Yukawa K, Nouri MZ, Komatsu S (2009) Proteomics approach for identifying osmotic-stress-related proteins in soybean roots. Peptides 30:2108–2117. doi:10.1016/j.peptides.2009.09.006
  • Vashisht AA, Tuteja N (2006) Stress- responsive DEAD-box helicases: a new pathway to engineer plant stress tolerance. J Photochem Photobiol B biol 84:150–160. doi:10.1016/j.jphotobiol.2006.02.010
  • Verslues PE, Ober ES, Sharp RE (1998) Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions. Plant Physiol 116:1403–1412. doi:10.1104/pp.116.4.1403
  • Wan F, Anderson DE, Barnitz RA, Snow A, Bidere N, Zheng L, Hegde V, Lam LT, Staudt LM, Levens D, Deutsch WA, Lenardo MJ (2007) Ribosomal protein S3: a KH domain subunit in NFjB complexes that mediates selective gene regulation. Cell 131:927–939. doi:10.1016/j.cell.2007.10.009
  • Wang BS, Ratajczak R, Zhang JH (2000) Activity, amount and subunit composition of vacuolar-type H⁺-ATPase and H⁺-PPase in wheat roots under severe NaCl stress. J Plant Physiol 157:109–116. doi:10.1016/S0176-1617(00)80143-1
  • Wang P, Liu H, Hua H, Wang L, Song CP (2011) A vacuole localized β-glucosidase contributes to drought tolerance in Arabidopsis. Chin Sci Bull 56:3538–3546. doi:10.1007/s11434-011-4802-7
  • Wi SJ, Kim WT, Park KY (2006) Overexpression of carnation Sadenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep 25:1111–1121. doi:10.1007/s00299-006-0160-3
  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139. doi:10.1046/j.1365-3040.2002.00782.x
  • Xu C, Huang B (2010) Differential proteomic responses to water stress induced by PEG in two creeping bentgrass cultivars differing in stress tolerance. J Plant Physiol 167:1477–1485. doi:10.1016/j.jplph.2010.05.006
  • Xu C, Sibicky T, Huang B (2010) Protein profile analysis of saltresponsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance. Plant Cell Rep 29:595–615. doi:10.1007/s00299-010-0847-3
  • Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stressresponsive proteins in rice root. Proteomics 5:235–244. doi:10.1002/pmic.200400853
  • Yokoi S, Bressan RA, Hasegawa PM (2002) Salt stress tolerance of plants. JIRCAS Work Rep, vol 1, pp 25–33
  • Zhao Q, Zhao YJ, Zhao BC, Ge RC, Li M, Shen YZ, Huang ZJ (2009) Cloning and functional analysis of wheat V-H⁺-ATPase subunit genes. Plant Mol Biol 69:33–46. doi:10.1007/s11103-008-9403-8
  • Zrenner R, Riegel H, Marquard CR, Lange PR, Geserick C, Bartosz CE, Chen CT, Slocum RD (2009) A functional analysis of the pyrimidine catabolic pathway in Arabidopsis. New Phytol 183:117–132. doi:10.1111/j.1469-8137.2009.02843.x

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-712ed9ef-5b3e-4c73-b407-923aa3fc766a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.