PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 62 | 3 |

Tytuł artykułu

Beta-glucuronidase and beta-glucosidase activity in stool specimens of children with inflammatory bowel disease

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of the study was to analyze the differences in the activity of β-glucuronidase and β-glucosidase in stool specimens of children with Inflammatory Bowel Diseases (IBD) and healthy subjects. The disease activity was determined according to the PCDAI scale (Crohn disease) and Truelove-Witts scale (Ulcerative colitis). Enzyme activity was determined by spectrophotometry. There was a correlation between the level of β - glucosidase activity in stool and patient’s age in the group of healthy controls, but not in the IBD group. β-glucosidase activity in IBD and healthy subjects stool specimens did not differ significantly. The activity of β-glucuronidase in children with IBD was two times lower than in the healthy group and was correlated with age in children with IBD, but not in the group of healthy ones.

Wydawca

-

Rocznik

Tom

62

Numer

3

Opis fizyczny

p.319-325,fig.,ref.

Twórcy

  • Institute of Fermentation Technology and Microbiology, Technical University of Lodz, Lodz, Poland
autor
  • Institute of Microecology in Poznan, Poznan, Poland
autor
  • Institute of Microecology in Poznan, Poznan, Poland
autor
  • Institute of Fermentation Technology and Microbiology, Technical University of Lodz, Lodz, Poland
autor
  • Institute of Fermentation Technology and Microbiology, Technical University of Lodz, Lodz, Poland
autor
  • First Department of Paediatrics, Department of Paediatric Gastroenterology and Metabolic Diseases, Medical University in Poznan, Poznan, Poland

Bibliografia

  • Akao T. 1999. Purification and characterization of glycyrrhetic acid mono-glucuronide β-D-glucuronidase in Eubacterium sp. GLH. Biol. Pharm. Bull. 1: 80–82.
  • Arul L., G. Benita and P. Balasubramanian. 2008. Functional insight for β-glucuronidase in Escherichia coli and Staphylococcus sp. RLH1. Bioinformation 2: 339–343.
  • Beaud D., P. Tailliez and J. Anba-M Ondoloni. 2005. Genetic characterization of the β-glucuronidase enzyme from a human intestinal bacterium, Ruminococcus gnavus. Microbiology 151: 2323–2330.
  • De Moreno de leBlanc A. and G. Perdigon. 2005. Reduction of β-glucuronidase and nitroreductase activity by yoghurt in a murine colon cancer model. Biocell 29: 15–24.
  • De Preter, H. Raemen, L. Cloetens, E. Houben and K. Verbeke. 2008. Effect of dietary intervention with different pre- and probiotics on intestinal bacterial enzyme activities. Eur. J. Clin. Nutr. 62: 225–231.
  • Enck P., K. Zimmermann, K. Rusch, A. Schwiertz, S. Klosterhalfen and J.S. Frick. 2009. The effects of maturation on the colonic microflora in infancy and childhood. Gastroenterol Res Pract. 752401.
  • Ewaschuk J.B. and L.A. Dieleman. 2006. Probiotics and prebiotics in chronic inflammatory bowel diseases. World J. Gastroenterol. 7: 5941–5950.
  • Haberer P., M. du Toit, L.M.T. Dicks, F. Ahvens and W.H. Halzapfel. 2003. Effect of potentially probiotic lactobacilli on faecal enzyme activity in minipigs on a high-fat, high-cholesterol diet - a preliminary in vivo trial. Int. J. Food. Microbiol. 87: 287–291.
  • Hanausek M., Z. Walaszek and T.J. Slaga. 2003. Detoxifying cancer causing agents to prevent cancer. Integr. Cancer Ther. 2: 139–144.
  • Hughes R. and I.R. Rowland. 2000. Metabolic activities of the gut microflora in relation to cancer. Microb. Ecol. Health Dis. 12: 179–185.
  • Kaivosaari S., M. Finel and M. Koskinen. 2011. N-glucuronidation of drugs and other xenobiotics by hum an and animal UDP-glucuronosyltransferases. Xenobiotica 41: 652–669.
  • Kim DH and Y.H. Jin. 2001. Intestinal bacterial beta-glucuronidase activity of patients with colon cancer. Arch. Pharm. Res. 24: 564–567.
  • Mroczynska M. and Z. Libudzisz. 2010. β-glucuronidase and β-glucosidase activity of lactobacillus and enterococcus isolated from human feces. Pol. J. Microbiol. 59: 265–269.
  • Mykkänen H., J. Tikka, T. Pitkänen and O. Hänninen. 1997. Fecal bacterial enzyme activities in infants increase with age and adoption of adult-type diet. J. Pediatr. Gastroenterol. Nutr. 25: 312–316.
  • Nakamura J., Y. Kubota, M. Miyaoka, T. Saitch, F. Mizuno and Y. Benno. 2002. Comparison of four microbial enzymes in Clostridia and Bacteroides isolated from human feces. Microbiol. Immunol. 46: 487–490.
  • Pegram R.A., W.T. Allaben and M.W. Chou. 1989. Effect of caloric restriction on afl atoxin B1-DNA adduct formation and associated factors in Fischer 344 rats: preliminary findings. Mech. Ageing. Dev. 48: 167–177.
  • Reddy B.S., J.H. Weisburger and E.L. Wynder. 1974. Fecal bacterial b-glucuronidase: control by diet. Science 183: 416–417.
  • Takaishi H., T. Matsuki, A. Nakazawa, T. Takada, S. Kado, T. Asahara, N. Kamada, A. Sakuraba, T. Yajima, H. Higuchi, N. Inoue, H. Ogata, Y. Iwao, K. Nomoto, R. Tanaka and T. Hibi. 2008. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int. J. Med. Microbiol. 298: 463–472.
  • Tremaine WJ. 2012. Is Indeterminate Colitis Determinable? Curr. Gastroenterol. Rep. 14: 162–165.
  • Walaszek Z., M. Hanausek-Walaszek and T.E. Webb. 1986. Dietary glucarate-mediated reduction of sensitivity of murine strains to chemical carcinogenesis. Cancer Lett. 33: 25–32.
  • Walaszek Z. 1993. Chemopreventive properties of D-glucaric acid derivatives. Cancer Bull. 45: 453–457.
  • Walaszek Z. 1990. Potential use of D-glucaric acid derivatives in cancer prevention. Cancer Lett. 54: 1–8
  • Żołtaszek R., M. Hanausek, Z.M. Kiliańska and Z. Walaszek. 2008. The biological role of D-glucaric acid and its derivatives: Potential use in medicine. Postępy Hig. Med. Dośw. 62: 451–462.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-70f4fd5e-c76f-4efb-8423-2fb5743905cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.