Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 11 |

Tytuł artykułu

Cloning and characterization of a Solanum torvum NPR1 gene involved in regulating plant resistance to Verticillium dahliae

Warianty tytułu

Języki publikacji



Non-expressor of pathogenesis-related protein 1 (NPR1) is a transcriptional factor of systemic acquired resistance in plants. In our previous study, a cDNA representing a NPR1 gene (designated NPR1) was screened to be responsive to the infection of Verticillium dahliae (V. dahliae) by the method of cDNA-amplified restriction fragment polymorphism (cDNA-AFLP), in a wild eggplant species (Solanum torvum, SW) which is highly resistant to Verticillium wilt. StoNPR1 is 1743 bp and contains an ORF encoding 581 amino acid residues with an estimated molecular mass of 65.46 kDa and a calculated pI of 5.58, and different from AtNPR1 (ABR46023), NgNPR1(ABX71071), and other orthologs, StoNPR1 contain two ankyrin repeat domains. Semi-quantitative RT-PCR assay indicated that the highest expression level of StoNPR1 occured in the roots but it was less abundant in the leaves and stems. When treated with 300 µm salicylic acid and V. dahliae, the transcript expression of StoNPR1 was significantly upregulated. Subcellular localization analysis revealed that the StoNPR1 protein was localized predominantly in the nucleus but it was also present in the cytoplasm. To investigate whether StoNPR1 regulated plant resistance to V. dahliae infection, we expressed StoNPR1 in V. dahliae sensitive potato. Antifungal assay in vitro and plant disease resistance analysis revealed that the overexpression lines were more resistant to V. dahliae, whereas the RNAi lines were susceptible, compared to the wild-type control. The expression of isochorismate synthase 1 and PR1a was significantly upregulated in the StoNPR1 over-expression lines and strongly induced by V. dahliae infection. These results revealed that StoNPR1 gene could regulate the resistance of the transgenic potato lines to V. dahliae infection.

Słowa kluczowe








Opis fizyczny



  • College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People’s Republic of China
  • Southern Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Science, 524091, Zhanjiang, China
  • College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People’s Republic of China
  • College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People’s Republic of China
  • College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People’s Republic of China
  • College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People’s Republic of China


  • Aravind L, Koonin EV (1999) Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain. J Mol Biol 285(4):1353–1361
  • Atallah Z, Bae J, Jansky S, Rouse D, Stevenson W (2007) Multiplex real-time quantitative PCR to detect and quantify Verticillium dahliae colonization in potato lines that differ in response to Verticillium wilt. Phytopathology 97(7):865–872
  • Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell Online 6(11):1583–1592
  • Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88(1):57–63 S0092-8674(00)81858-9 [pii]
  • Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci 95(11):6531–6536
  • Chern MS, Fitzgerald HA, Yadav RC, Canlas PE, Dong X, Ronald PC (2001) Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J 27(2):101–113
  • Chern M, Canlas PE, Fitzgerald HA, Ronald PC (2005a) Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NH1. Plant J 43(5):623–635
  • Chern M, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC (2005b) Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact 18(6):511–520. doi:10.1094/MPMI-18-0511
  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E (1994) A central role of salicylic acid in plant disease resistance. Science 266(5188):1247–1250
  • Delaney T, Friedrich L, Ryals J (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci 92(14):6602–6606
  • Després C, DeLong C, Glaze S, Liu E, Fobert PR (2000) The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12(2):279–290
  • Dong X (2004) NPR1, all things considered. Curr Opin Plant Biol 7(5):547–552. doi:10.1016/j.pbi.2004.07.005
  • Fradin EF, Thomma BP (2006) Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. alboatrum. Molecular Plant Pathology 7(2):71–86
  • Friedrich AB, Fischer I, Proksch P, Hacker J, Hentschel U (2001) Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol Ecol 38(2–3):105–115
  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261(5122):754–756
  • Glazebrook J (2001) Genes controlling expression of defense responses in Arabidopsis—2001 status. Curr Opin Plant Biol 4(4):301–308
  • Glazebrook J, Rogers EE, Ausubel FM (1996) Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143(2):973–982
  • Gousset C, Collonnier C, Mulya K, Mariska I, Rotino GL, Besse P, Servaes A, Sihachakr D (2005) Solanum torvum as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (S. melongena L.). Plant Sci 168(2):319–327
  • Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16(20):9877
  • Hong Y-b, Liu S-p, Zhu Y-p, Xie C, Jue D-w, Chen M, Kaleri HA, Yang Q (2013) Expression of the MSI-99 m gene in transgenic potato plants confers resistance to phytophthora infestans and ralstonia solanacearum. Plant Mol Biol Report 31(2):418–424
  • Hu P, An C, Li Y, Chen Z (1999) Prokaryotic expressed trichosanthin and other two proteins have anti-fungal activity in vitro. Acta Microbiol Sin 39(3):234
  • Hu J, Nakatani M, Lalusin AG, Kuranouchi T, Fujimura T (2003) Genetic analysis of sweetpotato and wild relatives using intersimple sequence repeats (ISSRs). Breed Sci 53(4):297–304
  • Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12(12):2339–2350
  • Le Henanff G, Heitz T, Mestre P, Mutterer J, Walter B, Chong J (2009) Characterization of Vitis vinifera NPR1 homologs involved in the regulation of Pathogenesis-Related gene expression. BMC Plant Biol 9(1):54
  • Lin WC, Lu CF, Wu JW, Cheng ML, Lin YM, Yang NS, Black L, Green SK, Wang JF, Cheng CP (2004) Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res 13(6):567–581
  • Lippok B, Birkenbihl RP, Rivory G, Brümmer J, Schmelzer E, Logemann E, Somssich IE (2007) Expression of AtWRKY33 encoding a pathogen-or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements. Mol Plant Microbe Interact 20(4):420–429
  • Liu L, Zhu K, Yang Y, Wu J, Chen F, Yu D (2008) Molecular cloning, expression profiling and trans-activation property studies of a DREB2-like gene from chrysanthemum (Dendranthema vestitum). J Plant Res 121(2):215–226
  • Liu S-p, Zhu Y-p, Xie C, Jue D-w, Hong Y-b, Chen M, Hubdar AK, Yang Q (2012) Transgenic potato plants expressing StoVe1 exhibit enhanced resistance to Verticillium dahliae. Plant Mol Biol Report 30(4):1032–1039
  • Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250(4983):1002–1004
  • Malnoy M, Jin Q, Borejsza-Wysocka E, He S, Aldwinckle H (2007) Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus × domestica. Mol Plant Microbe Interact 20(12):1568–1580
  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113(7):935–944 S009286740300429X [pii]
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497
  • Parkhi V, Kumar V, Campbell LM, Bell AA, Shah J, Rathore KS (2010) Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1. Transgenic Res 19(6):959–975
  • Penninckx I, Eggermont K, Terras F, Thomma B, De Samblanx GW, Buchala A, Métraux J-P, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell Online 8(12):2309–2323
  • Pieterse CM, Van Loon L (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7(4):456–464
  • Ryals J, Weymann K, Lawton K, Friedrich L, Ellis D, Steiner H-Y, Johnson J, Delaney TP, Jesse T, Vos P (1997) The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B. Plant Cell Online 9(3):425–439
  • Shah J, Tsui F, Klessig DF (1997) Characterization of a salicylic acid-i nsensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol Plant Microbe Interact 10(1):69–78
  • Shi Z, Maximova S, Liu Y, Verica J, Guiltinan M (2010) Functional analysis of the Theobroma cacao NPR1 gene in Arabidopsis. BMC Plant Biol 10(1):248
  • Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, Dong X (2009) Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137(5):860–872. doi:10.1016/j.cell.2009.03.038
  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins. Science 321(5891):952–956. doi:10.1126/science.1156970
  • Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206
  • Wang Z, Guo J, Zhang F, Huang Q, Huang L, Yang Q (2010) Differential expression analysis by cDNA-AFLP of Solanum torvum upon Verticillium dahliae infection. Russ J Plant Physiol 57(5):676–684
  • Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Despres C (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 1(6):639–647. doi:10.1016/j.celrep.2012.05.008
  • Yang L, Jue DW, Li W, Zhang RJ, Chen M, Yang Q (2013) Identification of MiRNA from Eggplant (Solanum melongena L.) by Small RNA Deep Sequencing and Their Response to Verticillium dahliae Infection. PLoS One 8(8):e72840
  • Yuan Y, Zhong S, Li Q, Zhu Z, Lou Y, Wang L, Wang J, Wang M, Li Q, Yang D (2007) Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J 5(2):313–324
  • Zhang Y, Shi J, Liu JY, Zhang JD, Guo XQ (2010) Identification of a novel NPR1-like gene from Nicotiana glutinosa and its role in resistance to fungal, bacterial and viral pathogens. Plant Biol 12(1):23–34
  • Zhang JY, Qiao YS, Lv D, Gao ZH, Qu SC, Zhang Z (2012) Malus hupehensis NPR1 induces pathogenesis-related protein gene expression in transgenic tobacco. Plant Biol (Stuttg) 14(Suppl 1):46–56. doi:10.1111/j.1438-8677.2011.00483.x

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.