Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Laboratory studies of ammonia emissions from the CO2 capture process using aqueous ammonia from the Solvay Process

Warianty tytułu
Języki publikacji
The aqueous solutions of various amines are used as chemical absorbents in gas treating processes. It is considered that aqueous ammonia can be used as a promising solvent for CO2 capture. Apart from the many advantages of ammonia as a CO2 capture solvent, its major drawback is high volatility. As a consequence, a large amount of ammonia can be released into the atmosphere. In this paper we investigated the effects of process parameters on ammonia emissions from the absorber used for CO2 capture. Ammonia solution withdrawn from the ammonia recovery tower of the Solvay Process was used as solvent. During the research, the absorber pressure, liquid to gas flow ratio (L/G) and concentration of ammonia have been varied. In addition, a novel simple method for quantitative analysis of absorbed CO2 in the ammonia solvent was described. We found that increasing the L/G ratio and ammonia concentration in the solvent resulted in a growth of ammonia emissions. The amount of released ammonia from the absorber was in the range 14-46 mg/dm3. However, it is important to note that no emission reduction devices were applied. The test of CO2 capture using aqueous ammonia was satisfactory, with more than 90% of the inlet CO2 stream being removed.
Słowa kluczowe
Opis fizyczny
  • Institute for Chemical Processing of Coal, Zabrze, Poland
  • Institute for Chemical Processing of Coal, Zabrze, Poland
  • Institute for Chemical Processing of Coal, Zabrze, Poland
  • Institute for Chemical Processing of Coal, Zabrze, Poland
  • Institute for Chemical Processing of Coal, Zabrze, Poland
  • 1. BAINS P., PSARRAS P., WILCOX J. CO2 capture from the industry sector. Progress in Energy and Combustion Science, 63 (Supplement C), 146, 2017.
  • 2. KOHL A.L. Gas Purification, Fifth Edition (5 edition.). Houston, Tex: Gulf Professional Publishing. 1997.
  • 3. WILK A., WIĘCŁAW-SOLNY L., KIERZKOWSKA-PAWLAK H., STEC M., ŚPIEWAK D., SPIETZ T. Effect of the solvent composition on the heat of absorption in the CO2 capture from flue gases. Przemysł Chemiczny, 93(12), 2237, 2014.
  • 4. WIĘCŁAW-SOLNY L., TATARCZUK A., STEC M., KRÓTKI A. Advanced CO2 Capture Pilot Plant at Tauron’s coal-fired Power Plant: Initial Results and Further Opportunities. Energy Procedia, 63, 6318, 2014.
  • 5. ABU-ZAHRA M.R.M., SCHNEIDERS L.H.J., NIEDERER J.P.M., FERON P.H M., VERSTEEG G.F. CO2 capture from power plants: Part I. A parametric study of the technical performance based on monoethanolamine. International Journal of Greenhouse Gas Control, 1, 37, 2007.
  • 6. RUSIN A., STOLECKA K. An analysis of hazards caused by emissions of amines from carbon dioxide capture installations. Polish Journal of Environmental Studies, 25 (3), 2016.
  • 7. AMUNDSEN T.G. CO2 Absorption in alkaline solution. MSc. Thesis. Telemark University College 2008. Retrieved from
  • 8. WILK A., WIĘCŁAW-SOLNY L., TATARCZUK A., KRÓTKI A., SPIETZ T., CHWOŁA T. Solvent selection for CO2 capture from gases with high carbon dioxide concentration. Korean Journal of Chemical Engineering, 34 (8), 1, 2017.
  • 9. GOUEDARD C., PICQ D., LAUNAY F., CARRETTE P.-L. Amine degradation in CO2 capture. I. A review. International Journal of Greenhouse Gas Control, 10, 244, 2012.
  • 10. GUNASEKARAN P., VEAWAB A., AROONWILAS A. Corrosivity of Single and Blended Amines in CO2 Capture Process. Energy Procedia, 37, 2094, 2013.
  • 11. SPIETZ T., DOBRAS S., WIĘCŁAW-SOLNY L., KRÓTKI A. Nitrosamines and nitramines in Carbon Capture plants. Environmental Protection and Natural Resources, 28 (4), 43, 2017.
  • 12. LAJNERT R., NOWAK M., TELENGA-KOPYCZYŃSKA J. Environmental issues and process risks for operation of carbon capture plant. E3S Web of Conferences, 28, 01021, 2018.
  • 13. YU H., QI G., WANG S., MORGAN S., ALLPORT A., COTTRELL A., FERON P. Results from trialling aqueous ammonia-based post-combustion capture in a pilot plant at Munmorah Power Station: Gas purity and solid precipitation in the stripper. International Journal of Greenhouse Gas Control, 10, 15, 2012.
  • 14. JILVERO H. Ammonia as an absorbent of carbon dioxide in post-combustion capture: an experimental, technical and economic process evaluation. Göteborg: Chalmers Univ. of Technology. 2014.
  • 15. KIM J.Y., HAN K., CHUN H.D. CO2 absorption with low concentration ammonia liquor. Energy Procedia, 1 (1), 757, 2009.
  • 16. MCLARNON C.R., DUNCAN J.L. Testing of Ammonia Based CO2 Capture with Multi-Pollutant Control Technology. Energy Procedia, 1 (1), 1027, 2009.
  • 17. HAN K., AHN C.K., LEE M.S., RHEE C.H., KIM J.Y., CHUN H.D. Current status and challenges of the ammonia-based CO2 capture technologies toward commercialization. International Journal of Greenhouse Gas Control, 14, 270, 2013.
  • 18. KOZAK F., PETIG A., MORRIS E., RHUDY R., THIMSEN D. Chilled ammonia process for CO2 capture. Energy Procedia, 1 (1), 1419, 2009.
  • 19. TELIKAPALLI V., KOZAK F., FRANCOIS J., SHERRICK B., BLACK J., MURASKIN D., SPITZNOGLE,G. CCS with the Alstom chilled ammonia process development program – Field pilot results. Energy Procedia, 4, 273, 2011.
  • 20. AUGUSTSSON O., BABURAO B., DUBE S., BEDELL S., STRUNZ, P., BALFE, M., STALLMANN, O. Chilled Ammonia Process Scale-up and Lessons Learned. Energy Procedia, 114, 5593, 2017.
  • 21. YU H., QI G., XIANG Q., WANG S., FANG M., YANG Q., FERON P. Aqueous Ammonia Based Post Combustion Capture: Results from Pilot Plant Operation, Challenges and Further Opportunities. Energy Procedia, 37, 6256, 2013.
  • 22. HAN K., AHN C.K., LEE M.S. Performance of an ammonia-based CO2 capture pilot facility in iron and steel industry. International Journal of Greenhouse Gas Control, 27, 239, 2014.
  • 23. SPIETZ T., STEC M., TATARCZUK A., WIĘCŁAW SOLNY L. Reduction of amines emission and their volatile degradation products. Chemik International, 69 (10), 625, 2015.
  • 24. THOMPSON J.G., COMBS M., ABAD K., BHATNAGAR S., PELGEN J., BEAUDRY M., LIU K. Pilot testing of a heat integrated 0.7MWe CO2 capture system with twostage air-stripping: Emission. International Journal of Greenhouse Gas Control, 64 (Supplement C), 267, 2017.
  • 25. MATHIAS P.M., REDDY S., O’CONNELL J.P. Quantitative evaluation of the chilled-ammonia process for CO2 capture using thermodynamic analysis and process simulation. International Journal of Greenhouse Gas Control, 4 (2), 174, 2010.
  • 26. SEO J.-B., JEON S.-B., KIM J.-Y., LEE G.-W., JUNG J.-H., OH K.-J. Vaporization reduction characteristics of aqueous ammonia solutions by the addition of ethylene glycol, glycerol and glycine to the CO2 absorption process. Journal of Environmental Sciences, 24 (3), 494, 2012.
  • 27. YOU J.K., PARK H., YANG S.H., HONG W.H., SHIN W., KANG J.K., KIM J.-N. Influence of Additives Including Amine and Hydroxyl Groups on Aqueous Ammonia Absorbent for CO2 Capture. The Journal of Physical Chemistry B, 112 (14), 4323, 2008.
  • 28. LI L., CONWAY W., BURNS R., MAEDER M., PUXTY G., CLIFFORD S., YU H. Investigation of metal ion additives on the suppression of ammonia loss and CO2 absorption kinetics of aqueous ammonia-based CO2 capture. International Journal of Greenhouse Gas Control, 56 (Supplement C), 165, 2017.
  • 29. TATARCZUK A., JASTRZĄB K., KRÓTKI,A., STEC M., WIĘCŁAW-SOLNY L., WILK A., SZAJKOWSKAKOBUS S., ZÓRAWSKI D., SKOWRON K., KIEDZIK Ł. Zastosowanie wychwytu CO2 w procesie produkcji sody. Przemysł Chemiczny, 96 (7), 1572, 2017.
  • 30. BENEDETTI-PICHLER A.A., CEFOLA M. Warder’s method for the titration of carbonates. Industrial & Engineering Chemistry Analytical Edition, 11 (6), 327, 1939.
  • 31. VOGEL A.I. Vogel’s textboook of quantitative chemical analysis - 5th ed.; Longman Scientific&Technical: Great Britain 1989.
  • 32. WEILAND R.H., TRASS O. Titrimetric determination of acid gases in alkali hydroxides and amines. Analytical Chemistry, 41 (12), 1709, 1969.
  • 33. WILK A., WIĘCŁAW-SOLNY L., ŚPIEWAK D., SPIETZ T., KIERZKOWSKA-PAWLAK H. A Selection of Amine Sorbents for CO2 Capture from Flue Gases. Chemical and Process Engineering, 36 (1), 49, 2015.
  • 34. YEH J.T., RESNIK K.P., RYGLE K., PENNLINE H.W. Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia. Fuel Processing Technology, 86 (14), 1533, 2005.
  • 35. GOVINDAN M., KARUNAKARAN K., NALLASAMY P., MOON I.S. Effective identification of (NH4)2CO3 and NH4HCO3 concentrations in NaHCO3 regeneration process from desulfurized waste. Talanta, 132, 327, 2015.
  • 36. KRÓTKI A., WIĘCŁAW-SOLNY L., TATARCZUK A., STEC M., WILK A., ŚPIEWAK D., SPIETZ T. Laboratory Studies of Post-combustion CO2 Capture by Absorption with MEA and AMP Solvents. Arabian Journal for Science and Engineering, 41 (2), 371, 2016.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.