PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 07 |

Tytuł artykułu

Effects of bacterial single inoculation and co-inoculation on growth and phytohormone production of sunflower seedlings under water stress

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The purpose of the study was to measure shoot and root dry matter (DM) and production of auxins, salicylic acid, abscisic acid, and jasmonic acid in sunflower (Helianthus annuus L.) seedlings cultivated under water stress and singly inoculated or co-inoculated with Achromobacter xylosoxidans (SF2) and Bacillus pumilus (SF3 and SF4) bacterial strains. Shoot DM was higher in non-stressed seedlings than in stressed seedlings for all inoculation treatments. Water stress resulted in decreased relative water content and reduction of shoot DM. Root DM was higher in stressed seedlings than in non-stressed seedlings. Salicylic acid was the most abundant phytohormone in shoots of stressed, singly inoculated and co-inoculated seedlings. High salicylic acid content in stressed seedlings suggests that this hormone plays a key role in abiotic stress. Abscisic acid was higher in stressed and co-inoculated seedlings than in non-stressed seedlings but was lower than that of salicylic acid. Auxin profile was similar to that of abscisic acid in co-inoculated seedlings. Shoot jasmonic acid content was increased in stressed seedlings co-inoculated with SF2/SF3 or SF2/SF4. Shoot hormonal profiles were different from those of root, suggesting a differential effect of bacterial inoculation on these plant organs. Our findings will be useful in future strategies to mitigate drought effects on crop plants through bacterial inoculation treatments.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

07

Opis fizyczny

p.2299-2309,fig.,ref.

Twórcy

autor
  • Laboratorio de Fisiologı´a Vegetal, Departamento de Ciencias Naturales, Universidad Nacional de Rı´o Cuarto, Ruta Nacional 36-Km 601, 5800 Rı´o Cuarto, Argentina
autor
  • Laboratorio de Fisiologı´a Vegetal, Departamento de Ciencias Naturales, Universidad Nacional de Rı´o Cuarto, Ruta Nacional 36-Km 601, 5800 Rı´o Cuarto, Argentina
autor
  • Laboratorio de Fisiologı´a Vegetal, Departamento de Ciencias Naturales, Universidad Nacional de Rı´o Cuarto, Ruta Nacional 36-Km 601, 5800 Rı´o Cuarto, Argentina
autor
  • Laboratorio de Fisiologı´a Vegetal, Departamento de Ciencias Naturales, Universidad Nacional de Rı´o Cuarto, Ruta Nacional 36-Km 601, 5800 Rı´o Cuarto, Argentina
autor
  • Laboratorio de Fisiologı´a Vegetal, Departamento de Ciencias Naturales, Universidad Nacional de Rı´o Cuarto, Ruta Nacional 36-Km 601, 5800 Rı´o Cuarto, Argentina

Bibliografia

  • Agele SO (2003) Sunflower responses to weather variations in rainy and dry cropping seasons in a tropical rain forest zone. Int J Biotronics 32:17–33
  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting characteristics. Microbiol Res 163:173–181
  • Ali B, Sabri AN, Ljung K, Hasnain S (2009) Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol 48:542–547
  • Arbona V, Go´mez-Cadenas A (2008) Hormonal modulation of citrus responses to flooding. J Plant Growth Regul 27:241–250
  • Arbona V, Argamasilla R, Go´mez-Cadenas A (2010) Common and divergent physiological, hormonal and metabolic response of Arabidopsis thaliana and Thellungiella halophila to water and salt stress. J Plant Physiol 167:1342–1350
  • Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 164:685–694
  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with plant growth promoting Rhizobacteria containing ACC-deaminase partially eliminates the effects of water stress on growth, yield and ripening of Pisum sativum L. Pedosphere 18: 611–620
  • Ashraf M (2010) Inducing drought tolerance in plants: some recent advances. Biotechnol Adv 28:169–183
  • Bandurska H, Stroinski A (2005) The effect of salicylic acid on barely response to water deficit. Act Physiol Plant 27:376–386
  • Bano A, Ullah F, Nosheen A (2012) Role of abscisic acid and drought stress on the activities of antioxidant enzymes in wheat. Plant Soil Environ 58:181–185
  • Bari R, Jones JDG (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69:473–488
  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing ACC deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181: 413–423
  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassan F, Luna V (2007) Phytohormone production by Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotech 74:874–880
  • Casanovas E, Barassi C, Sueldo R (2002) Azospirillum inoculation mitigates waters stress effect in maize seedlings. Cereal Res Comm 30:343–350
  • Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35
  • Catinot J, Buchala A, Abou-Mansour E, Métraux JP (2008) Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett 582:473–478
  • Chen Z, Zheng Z, Huang J, Lai Z, Fan B (2009) Biosynthesis of salicylic acid in plants. Plant Sig Behav 4:493–496
  • Chini A, Grant JJ, Seki M, Shinozaki K, Loake G (2004) Drought tolerance established by enhanced expression of the CC-NBSLRR gene, ADR1, requires salicylic acid, EDS 1 and ABI1. The Plant J 38:810–822
  • Cohen A, Bottini R, Piccoli PN (2008) Azospirllum brasilense sp. 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regul 54:97–103
  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462
  • Creelman RA, Mullet E (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 92:4114–4119
  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:273–281
  • De Ollas C, Hernando B, Arbona V, Gómez-Cadenas A (2012) Jasmonic acid transient accumulation is needed for abscısico acid increase in citrus roots under drought stress conditions. Physiol Plant. doi:10.1111/j.1399-3054.2012.01659.x
  • Dempsey DA, Vloth AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. American Soc of Plant Biol. doi:10.1199/tab.0156 The Arabidopsis book
  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crops salinity stress. J Exp Bot 63:3415–3428
  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379
  • Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gómez-Cadenas A (2005) Simultaneous determinación of multiple phytohormones in plants extracts by liquid chromatographyelectrospray tandem mass spectrometry. J Agric Food Chem 53:8437–8442
  • Figueiredo MVB, Burity HA, Martınez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. App Soil Ecol 40:182–188
  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotech 76:1145–1152
  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2010) Native bacteria from sunflower roots produce salicylic acid and improve seedling growth under water deficit stress. Curr Microbiol 61:485–493
  • Fragniere C, Serrano M, Abou-Mansour E, Metroux JP, L0Haridon F (2011) Salicylic acid and its location in response to biotic and abiotic stress. FEBS Lett 585:1847–1852
  • Garcion C, Lohmann A, Lamodiere E, Catinot J, Buchala A, Doermann P, Metroux JP (2008) Characterization and biological function of the isochorismate synthase2 gene of Arabidopsis. Plant Physiol 147:1279–1287
  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 4:109–117
  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339
  • Hamayun M, Khan SA, Shinawari ZK, Khan AL, Ahmad N, Lee I (2010) Effect of polyethylene glycol induced drought stress on physio-hormonal attributes of soybean. Pak J Bot 42:977–986
  • Hao JH, Wang XL, Dong CJ, Zhang ZG, Shang QM (2011) Salicylic acid induces stomatal closure by modulating endogenous hormone levels in cucumber cotyledons. Russ J Plant Physiol 58:906–913
  • Harb A, Krishnan A, Ambavaram MM, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271
  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25
  • Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300
  • Jain M, Khurana JP (2009) Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J 276:3148–3162
  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2008) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agr Biol 11:100–105
  • Janda T, Szalai G, Tari I, Páldi E (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208:175–180
  • Jiang F, Chen L, Belimov AA, Shaposhnikov AI, Gong F, Meng X, Hartung W, Jeschke DW, Davies W, Dodd IC (2012) Multiple impacts of the plant growth-promoting Rhizobacterium Variovorax paradoxus 5C–2 on nutrient and ABA relations of Pisum sativum. J of Exp Bot 63:6421–6430
  • Khan W, Prithiviraj B, Smith DL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492
  • Klambt HD (1962) Conversion in plants of benzoic acid to salicylic acid and its b-D-glucoside. Nature 196:491
  • Lee HI, Leon J, Raskin I (1995) Biosynthesis and metabolism of salicylic acid. Proc Natl Acad Sci USA 92:4076–4079
  • Lu GH, Ren DL, Wang XQ, Wu JK, Zhao MS (2010) Evaluation on drought tolerance of maize hybrids in China. J. Maize Sci 3:20–24
  • Mahouachi J, Arbona V, Gómez-Cadenas A (2007) Hormonal changes in papaya seedlings subjected to progressive water stress and re-watering. Plant Growth Regul 53:43–51
  • Malhotra M, Srivastava S (2009) Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM its ability to modulate plant growth. Eur J Soil Biol 45:73–80
  • Marasco EK, Schmidt-Dannert C (2008) Identification of bacterial carotenoid cleavage dioxygenase homologues that cleave the interphenyl a-b double bond of stilbene derivatives via a monooxygenase reaction. ChemBioChem 9:1450–1461
  • Marulanda A, Barea JM, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124
  • Molina A, Bueno P, Marı´n MC, Rodrıguez-Rosales MP, Belver A, Venema K (2002) Involvement of endogenous salicylic acid content, lipoxygenase and antioxidant enzyme activities in the response of tomato cell suspension cultures to NaCl. New Phytol 156:409–415
  • Munne-Bosch S, Peñuelas J (2003) Photo and antioxidative protection during summer leaf senescence in Pistascea lentiscus L. grown under mediterranean field conditions. Annu Bot 92:385–391
  • Mwale SS, Hamusimbi C, Mwansa V (2003) Germination, emergence and growth of sunflower (Helianthus annuus) in response to osmotic seed priming. Seed Sci Technol 31:199–206
  • Nemeth M, Janda T, Horvath E, Paldi E, Szalai G (2002) Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci 162:569–574
  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramırez I, Peña Cortés H, Machado-Domenech E, Abdala G (2003) Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul 41:149–158
  • Pérez-Alfocea F, Edmond Ghanem M, Gómez-Cadenas A, Dodd I (2011) Omics of root-to-shoot signaling under salt stress and water deficit. OMICS A J Integrat Biol 15:893–901
  • Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassan FD, Luna MV (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. App Microbiol Biotechnol 75:1143–1150
  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316
  • Probanza A, Lucas JA, Acero N, Gutierrez-Mañero FS (1996) The influence of native Rhizobacteria on European alder [Almus glutinosa (L). (Gaerth)] growth. I. Characterization of growth promoting and nitrogen accumulation of inoculated alfalfa. Plant Soil 164:213–219
  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms. The role of salicylic acid. Plant J 16:603–614
  • Ribnicky DM, Shulaev V, Raskin I (1998) Intermediates of salicylic acid biosynthesis in tobacco. Plant Physiol 118:565–572
  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Experim Bot 26:3321–3338
  • Shi Q, Zhu Z (2008) Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environ Exp Bot 63:317–326
  • Shibasaki K, Uemura M, Tsurumi S, Rahman A (2009) Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. Plant Cell 21:3823–3838
  • Shilev S, Sancho ED, Benlloch-González M (2012) Rhizospheric bacteria alleviate salt-produced stress in sunflower. J Environ Manag 95:37–41
  • Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J (2008) Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312:15–23
  • Tahir MHN, Imran M, Hussain MK (2002) Evaluation of sunflower (Helianthus annuus L.) inbred lines for drought tolerance. Int J Agr Biol 4:398–400
  • Teulat B, Zoumarou-Wallis N, Rotter B, Ben Salim M, Bahri H, This D (2003) QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor and Appl Genet 108:181–188
  • Turhan H, Baser I (2004) Callus induction from mature embryo of winter wheat (Triticum aestivum L.). Asian J Plant Sci 3:17–19
  • Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS, Bender CL (2007) The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interac 20:955–965
  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frei dit Frey N, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217
  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697
  • Wasternack C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress responses and development. Prog Nucleic Acid Res Mol Biol 72:165–221
  • Weller DM, Thomashow LS (1994) Current challenges in introducing benefical microoganisms into the rizosphere. In: O0Gara F, Dowling D, Boesten N (eds) Molecular Ecology of Rhizosphere Microorganisms. Biotech and Release of GMOs. New York, pp 1-18
  • Zhang L, Gao M, Hu J, Zhang X, Wang K, Ashraf M (2012) Modulation role of abscisic acid (ABA) on growth, water relations and Glycinebetaine metabolism in two maize (Zea mays L.) cultivars under drought stress. Int J Mol Sci 13: 3189–3202

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-70532410-6d4f-458c-9b58-2bb4e84884c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.