PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

Photocatalytic decomposition of air pollutants using electrodeposited photocatalysts on stainless steel

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of our research was to develop an immobilization method for photocatalysts that is an alternative to the sol-gel or dip-coating methods and can be simply scaled up for technical applications. The investigated photocatalyst was TiO₂, which was electrochemically deposited onto a cathode made of stainless steel. This deposited film was photocatalytically active. In order to enhance the photoactivity of the TiO₂ film, commercially available P25 photocatalyst nanoparticles were occluded into the film. The effect of deposition current density as well as the amount of occluded nanoparticles on the photocatalytic activity and photoelectrochemical behavior was investigated. The photocatalytic activity was evaluated in a UV-LED reactor. The decomposition rate of toluene and cyclohexane in air was examined for all prepared stainless steel-photocatalyst composites. It was observed that deposits prepared with 5 g dm⁻³ of P25 in the deposition bath showed the best photocatalytic activity and highest photocurrent.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.1157-1164,fig.,ref.

Twórcy

autor
  • Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
autor
  • Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
  • Institute for Catalysis, Hokkaido University, Sapporo, Japan
autor
  • Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
autor
  • Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland

Bibliografia

  • 1. TARANTO J., FROCHOT D., PICHAT P. Photocatalytic air purification: Comparative efficacy and pressure drop of a TiO₂-coated thin mesh and a honeycomb monolith at high air velocities using a 0.4 m3 close-loop reactor. Sep. Purif. Technol., 67 (2), 187, 2009.
  • 2. HÄNEL A., MOREŃ P., ZALESKA A., HUPKA J. Photocatalytic activity of TiO₂ immobilized on glass beads. Physicochem. Probl. Miner. Process., 45, 49, 2010.
  • 3. ZALESKA A., HÄNEL A., NISCHK M. Photocatalytic air purification. Recent Paten. Eng., 4 (3), 200, 2010.
  • 4. ZMUDZIŃSKI W. Removal of o-Cresol from Water by Adsorption/Photocatalysis. Pol. J. Environ. Stud., 19 (6), 1353, 2010.
  • 5. POZZO R.L., BALTANAS M.A., and CASSANO A.E. Supported titanium oxide as photocatalyst in water decontamination: State of the art. Catal. Today, 39 (3), 219, 1997.
  • 6. ZHANG Y., XIONG X., HAN Y., ZHANG X., SHEN F., DENG S., XIAO H., YANG X., YANG G., and PENG H. Photoelectrocatalytic degradation of recalcitrant organic pollutants using TiO₂ film electrodes: An overview. Chemosphere, 88 (2), 145, 2012.
  • 7. LEE W., PARK S.-J. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem. Rev. (Washington, DC, U. S.), 114 (15), 7487, 2014.
  • 8. ZWILLING V., AUCOUTURIER M., DARQUE-CERETTI E. Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochim. Acta, 45 (6), 921, 1999.
  • 9. JUN Y., PARK J.H., KANG M.G. The preparation of highly ordered TiO₂ nanotube arrays by an anodization method and their applications. Chem. Commun., 48 (52), 6456, 2012.
  • 10. RANI S., ROY S.C., PAULOSE M., VARGHESE O.K., MOR G.K., KIM S., YORIYA S., LATEMPA T.J., GRIMES C. Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys. Chem. Chem. Phys., 12 (12), 2780, 2010.
  • 11. FENG Z.-S., CHEN J.-J., ZHANG C., ZHAO N., LIANG Z. Formation of Al₂O₃-TiO₂ composite oxide films on aluminum foil by cathodic electrodeposition and anodizing. Ceram. Int., 38 (3), 2501, 2012.
  • 12. ERTEKIN Z., TAMER U., PEKMEZ K. Cathodic electrochemical deposition of Magnéli phases Tiₙ O₂ₙ₋₁ thin films at different temperatures in acetonitrile solution. Electrochim. Acta, 163, 77, 2015.
  • 13. KAVAN L. Nanomaterials based on carbon and Ti (IV) oxides: Some aspects of their electrochemistry. Int. J. Nanotech., 9 (8-9), 652, 2012.
  • 14. CHIGANE M., SHINAGAWA T. Preparation of Thick Titanium Dioxide Films by Repeated Electrolysis-Calcination for Dye-Sensitized Solar Cells. J. Electrochem. Soc., 161 (3), E40, 2014.
  • 15. WESSELS K., WARK M., OEKERMANN T. Efficiency improvement of dye-sensitized solar cells based on electrodeposited TiO₂ films by low temperature post-treatment. Electrochim. Acta, 55 (22), 6352, 2010.
  • 16. LIU L., MANDLER D., Sol-Gel Coatings by Electrochemical Deposition, in The Sol-Gel Handbook: Synthesis, Characterization and Applications; Levy D. and Zayat M., Eds., John Wiley & Sons: Weinheim, Volume 2, pp. 373, 2015.
  • 17. PIFFERI V., SPADAVECCHIA F., CAPPELLETTI G., PAOLI E.A., BIANCHI C.L., FALCIOLA L. Electrodeposited nano-titania films for photocatalytic Cr(VI) reduction. Catal. Today, 209, 8, 2013.
  • 18. CHENTHAMARAKSHAN C.R., DE TACCONI N.R., RAJESHWAR K., SHIRATSUCHI R. Immobilizing semiconductor particles by occlusion electrosynthesis in an oxide film matrix: The titania model case. Electrochem. Commun., 4 (11), 871, 2002.
  • 19. GEORGIEVA J. TiO₂/WO₃ photoanodes with enhanced photocatalytic activity for air treatment in a polymer electrolyte cell. J. Solid State Electrochem., 16 (3), 1111, 2011.
  • 20. GEORGIEVA J., SOTIROPOULOS S., ARMYANOV S., PHILIPPIDIS N., POULIOS I. Photoelectrocatalytic activity of bi-layer TiO₂/WO₃ coatings for the degradation of 4-chlorophenol: effect of morphology and catalyst loading. J. Appl. Electrochem., 41 (2), 173, 2011.
  • 21. ISHIZAKI H., ITO S. Electrochemical Fabrication of Titanium Oxide Film from an Aqueous Solution Containing Titanium Ion and Hydroxylamine. ECS Trans., 41 (4), 111, 2011.
  • 22. SAYAHI H., MOHSENZADEH F., HAMADANIAN M. Cost-effective fabrication of perdurable electrodeposited TiO₂ nano-layers on stainless steel electrodes applicable to photocatalytic degradation of methylene blue. Res. Chem. Intermed., 1, 2017.
  • 23. TRUONG Q.D., DIEN L.X., VO D.-V.N., LE T.S. Controlled synthesis of titania using water-soluble titanium complexes: A review. J. Solid State Chem., 251, 143, 2017.
  • 24. KAKIHANA M., KOBAYASHI M., TOMITA K., PETRYKIN V. Application of Water-Soluble Titanium Complexes as Precursors for Synthesis of Titanium-Containing Oxides via Aqueous Solution Processes. Bull. Chem. Soc. Jpn., 83 (11), 1285, 2010.
  • 25. ZHITOMIRSKY I., GAL-OR L., KOHN A., HENNICKE H.W. Electrodeposition of ceramic films from non-aqueous and mixed solutions. J. Mater. Sci., 30 (20), 5307, 1995.
  • 26. MÜHLEBACH J., MÜLLER K., SCHWARZENBACH G. Peroxo complexes of titanium. Inorg. Chem., 9, 2381, 1970.
  • 27. BARD A.J., FAULKNER L.R. Electrochemical Methods - Fundamentals and Applications, 2nd ed; John Wiley & Sons Inc.: New York, USA, pp. 809, 2001.
  • 28. THERESE G.H.A., KAMATH P.V. Electrochemical synthesis of metal oxides and hydroxides. Chem. Mater., 12 (5), 1195, 2000.
  • 29. HÄNEL A. Evaluation of cathode materials for the electrochemical photocatalyst deposition. PhD Interdiscipl. J., 1, 175, 2015.
  • 30. NISCHK M., MAZIERSKI P., GAZDA M., ZALESKA A. Ordered TiO₂ nanotubes: The effect of preparation parameters on the photocatalytic activity in air purification process. Appl. Catal., B, 144, 674, 2014.
  • 31. MIODUSKA J., ZIELIŃSKA-JUREK A., HUPKA J. Photocatalytical degradation of toluene and cyclohexane using LED illumination. Pol. J. Environ. Stud., 26 (3), 1159, 2017.
  • 32. HAN C., PELAEZ M., LIKODIMOS V., KONTOS A.G., FALARAS P., O’SHEA K., DIONYSIOU D.D. Innovative visible light-activated sulfur doped TiO₂ films for water treatment. Appl. Catal., B, 107 (1-2), 77, 2011.
  • 33. ARMAN S.Y., OMIDVAR H., TABAIAN S.H., SAJJADNEJAD M., FOULADVAND S., AFSHAR S. Evaluation of nanostructured S-doped TiO₂ thin films and their photoelectrochemical application as photoanode for corrosion protection of 304 stainless steel. Surf. Coat. Technol., 251 (25), 162, 2014.
  • 34. BARR T.L. An ESCA study of the termination of the passivation of elemental metals. J. Phys. Chem., 82 (16), 1801, 1978.
  • 35. YU Q.L. BROUWERS H.J.H. Indoor air purification using heterogeneous photocatalytic oxidation part I: Experimental study. Appl. Catal., B, 92, 454, 2009.
  • 36. WANG Y., HUANG Y., HO W., ZHANG L., ZOU Z., LEE S. Biomolecule-controlled hydrothermal synthesis of CNS-tridoped TiO₂ nanocrystalline photocatalysts for NO removal under simulated solar light irradiation. J. Hazard. Mater., 169 (1-3), 77, 2009.
  • 37. GEORGIEVA J., ARMYANOV S., VALOVA E., POULIOS I., SOTIROPOULOS S. Preparation and photoelectrochemical characterisation of electrosynthesised titanium dioxide deposits on stainless steel substrates. Electrochim. Acta, 51 (10), 2076, 2006.
  • 38. DROGOWSKA M., MÈNARD H., BROSSARD L. Electrooxidation of Stainless Steel AISI 304 in Carbonate Aqueous Solution at pH 8. J. Appl. Electrochem., 26 (2), 217, 1996.
  • 39. YANG Z., CHOI D., KERISIT S., ROSSO K.M., WANG D., ZHANG J., GRAFF G., LIU J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources, 192 (2), 588, 2009.
  • 40. YANG L., LIU Z., SHI J., HU H., SHANGGUAN W. Design consideration of photocatalytic oxidation reactors using eTiO₂-coated foam nickels for degrading indoor gaseous formaldehyde. Catal. Today, 126 (3-4), 359, 2007.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7047da2d-7496-41df-ae7f-4665f6644ac2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.