PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 27 | 3 |

Tytuł artykułu

Compressive response of some agricultural soils influenced by the mineralogy and moisture

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study aimed to investigate the mineralogy, moisture retention, and the compressive response of two agricultural soils from South West Nigeria. Undisturbed soil cores at the A and B horizons were collected and used in chemical and hydrophysical characterization and confined compression test. X-ray diffractograms of oriented fine clay fractions were also obtained. Our results indicate the prevalence of kaolinite minerals relating to the weathering process in these tropical soils. Moisture retention by the core samples was typically low with pre-compression stress values ranging from50 to 300 kPa at both sites. Analyses of the shape of the compression curves highlight the influence of soil moisture in shifts from the bi-linear to S-shaped models. Statistical homogeneity test of the load bearing capacity parameters showed that the soil mineralogy influences the response to loading by these soils. These observations provide a physical basis for the previous classification series of the soils in the studied area. We showed that the internal strength attributes of the soil could be inferred from the mineralogical properties and stress history. This could assist in decisions on sustainable mechanization in a datapoor environment.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

3

Opis fizyczny

p.239-246,fig.,ref.

Twórcy

autor
  • Department of Agricultural and Environmental Engineering, Federal University of Technology, PMB 704, Akure Ondo State, Nigeria
  • Department of Soil Science, Federal University of Lavras, Postal Box 3037, CEP:37200-000, Lavras, Brasil
  • Department of Soil Science, Federal University of Lavras, Postal Box 3037, CEP:37200-000, Lavras, Brasil
autor
  • Department of Soil Science, Federal University of Lavras, Postal Box 3037, CEP:37200-000, Lavras, Brasil
autor
  • Department of Agricultural and Bio-Environmental Engineering, Federal Polytechnic PMB 5351 Ado Ekiti, Ekiti State, Nigeria

Bibliografia

  • Adekalu K.O. and Osunbitan J.A., 2001. Compactibility of some agricultural soil in South Wester Nigeria. Soil Till. Res., 59, 27-31.
  • Ajayi A.E., Dias Junior M.S., Curi N., Araujo Junior C.F., Teixeira Souza T.T., and Inda Junior A.V., 2009. Strength attributes and compaction susceptibility of Brazilian Latosols. Soil Till. Res., 105, 122-127.
  • Barik K., Canbolat M.Y., Yanýk R., and Islam R.K., 2011. Compressive behavior of soil as affected by aggregate size with different textures in Turkey. J. Animal Plant Sci., 21(2), 186-192.
  • Bartoli F., Burtin G., and Guérif J., 1992. Influence of organic matter on aggregation in Oxisols rich in gibbsite or in goethite. II. Clay dispersion, aggregate strength and water stability. Geoderma, 54, 259-274.
  • Besalatpour A., Hajabbasi M.A., Ayoubi S., Gharipour A., and Jazi A.Y., 2012. Prediction of soil physical properties by optimized support vector machines. Int. Agrophys., 26, 109-115.
  • Cui K., Défossez P., Cui Y.J., and Richard G., 2010. Quantifying the effect of matric suction on the compressive properties of two agricultural soils using an osmotic oedometer. Geoderma, 156, 337-345.
  • Dias Junior M.S., 2003. A soil mechanics approach study soil compaction (Ed. H. Achyuthan). In: Soil and soil physics in continental environment. Chenna: Allied Publishers Private, 179-199.
  • Dias Junior M.S., Fonseca S., Araújo Junior C.F., and Silva A.R., 2007. Soil compaction due to forest harvest operations. Pesq. Agropec. Bras., Brasília, 42(2), 257-264.
  • Dias Junior M.S. and Pierce F.J., 1995. A simple procedure for estimating preconsolidation pressure from soil compression curves. Soil Technol., 8, 139-151.
  • Gao W., Ren T., Bengough A.G., Auneau L., Watts C.W., and Whalley W.R., 2012. Predicting Penetrometer Resistance from the Compression Characteristic of Soil. Soil Sci. Soc. Am. J., 76, 361-369.
  • Horn R., 2003. Stress-strain effects in structured unsaturated soils on coupled mechanical and hydraulic processes. Geoderma, 116, 77-88.
  • Horn R., Domżał H., Słowińska-JurkiewiczA., and van Ouwerkerk C., 1995. Soil compaction processes and their effects on the structure of arable soils and the environment. Soil Till. Res., 35, 23-36.
  • Horn R. and Smucker A., 2005. Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils. Soil Till. Res., 82, 5-14.
  • Keller T. and Lamandé M., 2010. Challenges in the development of analytical soil compaction models. Soil Till. Res., 111(1), 54-64.
  • Lal R., 1979. Physical properties and moisture retention characteristics of some Nigerian soils. Geoderma, 21, 209-223.
  • Markgraf W., 2011. Rheology in soils. In: Encyclopedia of Agrophysics (Eds J. Glinski, J. Horabik, J. Lipiec). Springer Press, Dordrecht-Heidelberg-London- New York. Markgraf W., Watts C. W., Whalley W.R., Hrkac T., and Horn R., 2011. Influence of organic matter on rheological properties of soil. Appl. Clay Sci., 64, 25-33.
  • Miranda-Trevino J.C. and Coles C. A., 2003. Kaolinite properties, structure and influence of metal retention on pH. Appl. Clay Sci., 23, 133-139.
  • Pai C.W., Wang M.K., King H.B., Chiu C.Y., and Hwong J.-L., 2004. Hydroxy-interlayered minerals of forest soils in A-Li Mountain, Taiwan. Geoderma, 123, 245-255.
  • Peng X.H., Horn R., Zhang B., and Zhaoa Q.G., 2004. Mechanisms of soil vulnerability to compaction of homogenized and recompacted Ultisols. Soil Till. Res., 76, 125-137.
  • Rawls W.J., Pachepsky Y.A., Ritchie J.C., Sobecki T.M., and Bloodwort H., 2003. Effect of soil carbon on soil water retention. Geoderma, 116, 61-76.
  • Silva A.J.N. and Cabeda M.S.V., 2006. Compression and compressibility of the soil under tillage systems and humidity levels (in Portuguese). J. Brazilian Soil Sci. Soc., 30(5), 921-930.
  • Snedecor G.W. and Cochran W.G., 1989. Statistical Methods. Iowa State University, Ames, IA, USA. Spoor G., Tijink F.G.J., and Weisskopf P., 2003. Subsoil compaction: risk, avoidance, identification and alleviation. Soil Till. Res., 73, 175-182.
  • Tang A., Cui Y., Eslami J., and Défossez P., 2009. Analysing the form of the con?ned uniaxial compression curve of various soils. Geoderma, 148, 282-290.
  • Tripathy S., Subba Rao K.S., and Fredlund D.G., 2002. Water content – void ratio swell-shrink paths of compacted expansive soils. Can. Geotech. J., 39, 938-959.
  • van Genuchten M., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. SSSA J., 44(5), 892-898.
  • Wäldchen J., Schöning I., Mund M., Schrumpf M, Bock S., Herold N., Totsche U.K., and Schulze E.D., 2012. Estimation of clay content from easily measurable water content of air-dried soil. J. Plant Nutr. Soil Sci., 175(3), 367-376.
  • WiermannC.,WernerD.,HornR., Rostek J.,andWernerB., 2000. Stress/strain processes in a structured unsaturated silty loam Luvisol under different tillage treatments in Germany. Soil Till. Res., 53, 117-128.
  • Williams J., Prebble R.E., Williams W.T., and Hignett C.T., 1983. The influence of texture, structure and clay mineralogy on the soil moisture characteristic. Australian J. Soil Res., 21, 1532.
  • Zhang B.R., Horn R., and Baumgartl T., 2001. Shear strength of surface soils as affected by soil bulk density and soil water. Soil Till. Res., 59, 97-106.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-702c4683-0d57-4ea4-95ba-ce419285c774
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.