PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 4 |

Tytuł artykułu

Advanced treatment of leachate secondary effluent by a combined process of MFPFS coagulation and sulfate radical oxidation

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Leachate secondary effluent is usually unable to meet the national discharge permit in China and further treatment is a significant challenge because of the residual persistent pollutants. A novel magnetic composite coagulant of MFPFS was prepared from Fe3O4 nanoparticles and polymeric ferric sulfate (PFS). Landfill leachate secondary effluent was treated by MFPFS coagulation combined with sulfate radical oxidation due to Fe2+ activation. Higher COD and color removals were achieved using the MFPFS magnetic coagulant than by adding the coagulant PFS alone. Under the working conditions of 1:3 Fe3O4/PFS mass ratios, 1.2 g/L MFPFS dosage, 50 min sedimentation time, and without pH adjustment, the removals of COD and color reached up to 60% and 80%, respectively. In the oxidation process, Na2S2O8 was activated by Fe2+ to generate sulfate radicals to oxide the residual pollutants in the effluent from MFPFS coagulation. In general, higher temperature, higher dosage, and lower pH were in favor of the oxidation efficiencies. Under the working conditions of 2.4 g/L Na2S2O8 dosage, 0.3 Fe2+/S2O8 2- molar ratio, pH 3.0, and 60ºC temperature, the COD and color removals can reach up to 75% and 95%. After being treated by the combined process, no violation of Chinese effluent standards for landfill leachate was found in respect of each individual parameter, including COD, color, and other parameters like BOD, total nitrogen, and ammonia nitrogen. The combined process was a promising alternative treatment pathway for leachate secondary effluent.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

4

Opis fizyczny

p.1615-1622,fig.,ref.

Twórcy

autor
  • School of Civil Engineering and Architecture, East China Jiao Tong University, 808 East Shuanggang Road, Changbei District, Nanchang, 330031, China
autor
  • School of Civil Engineering and Architecture, East China Jiao Tong University, 808 East Shuanggang Road, Changbei District, Nanchang, 330031, China
autor
  • School of Civil Engineering and Architecture, East China Jiao Tong University, 808 East Shuanggang Road, Changbei District, Nanchang, 330031, China

Bibliografia

  • 1. Gotvajn A.Z., Tisler T., Zagorc-Koncan J. Comparison of different treatment strategies for industrial landfill leachate. J. Hazard. Mater., 162 (2-3), 1446, 2009.
  • 2. Mahmud K., Hossain M.D., Shams S. Different treatment strategies for highly polluted landfill leachate in developing countries. Waste Manage., 32 (11), 2096, 2012.
  • 3. FERNANDES A., PACHECO M.J., CIRÍACO L., LOPES A. Review on the electrochemical processes for the treatment of sanitary landfill leachates: Present and future. Appl. Catal., B, 176-177, 183, 2015.
  • 4. HE P.J., ZHENG Z., ZHANG H., SHAO L.M., TANG Q.Y. PAEs and BPA removal in landfill leachate with Fenton process and its relationship with leachate DOM composition. Sci. Total Environ., 407 (17), 4928, 2009.
  • 5. NTAMPOU X., ZOUBOULIS A.I., SAMARAS P. Appropriate combination of physico-chemical methods (coagulation/flocculation and ozonation) for the efficient treatment of landfill leachates. Chemosphere, 62 (5), 722, 2006.
  • 6. GANDHIMATHI R., DURAI N.J., NIDHEESH P.V., RAMESH S.T., KANMANI S. Use of combined coagulationadsorption process as pretreatment of landfill leachate. Iran. J. environ. Healt., 10 (1), 1, 2013.
  • 7. LI W., HUA T., ZHOU Q., ZHANG S., LI F. Treatment of stabilized landfill leachate by the combined process of coagulation/flocculation and powder activated carbon adsorption. Desalination, 264 (1-2), 56, 2010.
  • 8. Soni A., Tiwari A., Bajpai A.K. Removal of malachite green from aqueous solution using nano-iron oxide-loaded alginate microspheres: batch and column studies. Res. Chem. Intermediat., 40 (3), 913, 2014.
  • 9. ZHANG M., XIAO F., XU X.Z., WANG D.S. Novel ferromagnetic nanoparticle composited PACls and their coagulation characteristics. Water Res., 46 (1), 127, 2012.
  • 10. JIANG C., WANG R., MA W. The effect of magnetic nanoparticles on Microcystis aeruginosa removal by a composite coagulant. Colloids Surf., A, 369 (1-3), 260, 2010.
  • 11. HONG M.K., PARK B.J., CHOI H.J. Preparation and physical characterization of polyacrylamide coated magnetite particles. Physica Status Solidi a-Applications and Materials Science, 204 (12), 4182, 2007.
  • 12. LIU X., HU Q., FANG Z., ZHANG X., ZHANG B. Magnetic Chitosan Nanocomposites: A Useful Recyclable Tool for Heavy Metal Ion Removal. Langmuir, 25 (1), 3, 2009.
  • 13. Turro E., Giannis A., Cossu R., Gidarakos E., Mantzavinos D., Katsaounis A. Electrochemical oxidation of stabilized landfill leachate on DSA electrodes. J. Hazard. Mater., 190 (1-3), 460, 2011.
  • 14. FERNANDES A., SPRANGER P., FONSECA A.D., PACHECO M.J., CIRÍACO L., LOPES A. Effect of electrochemical treatments on the biodegradability of sanitary landfill leachates. Appl. Catal., B., 144, 514, 2014.
  • 15. WANG P., ZENG G., PENG Y., LIU F., ZHANG, C., HUANG B., ZHONG Y., HE Y., LAI M. 2,4,6-Trichlorophenolpromoted catalytic wet oxidation of humic substances and stabilized landfill leachate. Chem. Eng. J., 247, 216, 2014.
  • 16. XU X.Y., ZENG G.M., PENG Y.R., ZENG Z. Potassium persulfate promoted catalytic wet oxidation of fulvic acid as a model organic compound in landfill leachate with activated carbon. Chem. Eng. J., 200-202, 25, 2012.
  • 17. CHYS M., OLOIBIRI V.A., AUDENAERT W.T.M., DEMEESTERE K., VAN HULLE S.W.H. Ozonation of biologically treated landfill leachate: efficiency and insights in organic conversions. Chem. Eng. J., 277, 104, 2015.
  • 18. AMIRI A., SABOUR M.R. Multi-response optimization of Fenton process for applicability assessment in landfill leachate treatment. Waste Manag, 34 (12), 2528, 2014.
  • 19. SILVA T.F., FERREIRA R., SOARES P.A., MANENTI D.R., FONSECA A., SARAIVA I., BOAVENTURA R.A., VILAR V.J. Insights into solar photo-Fenton reaction parameters in the oxidation of a sanitary landfill leachate at lab-scale. J. Environ. Manage., 164, 32, 2015.
  • 20. ANFRUNS A., GABARRO J., GONZALEZ-OLMOS R., PUIG S., BALAGUER M.D., COLPRIM J. Coupling anammox and advanced oxidation-based technologies for mature landfill leachate treatment. J. Hazard. Mater., 258-259, 27, 2013.
  • 21. JI Y., FAN Y., LIU K., KONG D., LU J. Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds. Water Res., 87, 1, 2015.
  • 22. FAN Y., JI Y., KONG D., LU J., ZHOU Q. Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process. J. Hazard. Mater., 300, 39, 2015.
  • 23. EPOLD I., DULOVA N. Oxidative degradation of levofloxacin in aqueous solution by S₂O₈²⁻ /Fe²⁺, S₂O₈²⁻/H₂O₂ and S₂O₈²⁻/OH⁻ processes: A comparative study. Journal of Environmental Chemical Engineering, 3 (2), 1207, 2015.
  • 24. WANG C.W., LIANG C. Oxidative degradation of TMAH solution with UV persulfate activation. Chem. Eng. J., 254, 472, 2014.
  • 25. SHARMA J., MISHRA I.M., DIONYSIOU D.D., KUMAR V. Oxidative removal of Bisphenol A by UV-C/peroxymonosulfate (PMS): Kinetics, influence of coexisting chemicals and degradation pathway. Chem. Eng. J., 276, 193, 2015.
  • 26. KUSHIDA M., KOIDE T., OSADA I., IMAIZUMI Y., KAWASAKI K., SUGAWARA T. Fabrication of Fe3O4/SiO2 core–shell nanoparticle monolayer as catalyst for carbon nanotube growth using Langmuir-Blodgett technique. Thin Solid Films, 537, 252, 2013.
  • 27. Liu X., Li X.-M., Yang Q., Yue X., Shen T.-T., Zheng W., Luo K., Sun Y.-H., Zeng G.-M. Landfill leachate pretreatment by coagulation–flocculation process using iron-based coagulants: Optimization by response surface methodology. Chem. Eng. J., 200-202, 39, 2012.
  • 28. LI S.X., WEI D., MAK N.K., CAI Z., XU X.R., LI H.B., JIANG Y. Degradation of diphenylamine by persulfate: Performance optimization, kinetics and mechanism. J. Hazard. Mater., 164 (1), 26, 2009.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6fd045e4-c999-4fc8-bac9-54a10d29d124
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.