PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 09 |

Tytuł artykułu

The genetic background of benzoxazinoid biosynthesis in cereals

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Benzoxazinoids (BXs) are important compounds in plant defense. Their allelopathic, nematode suppressive and antimicrobial properties are well known. BXs are found in monocot plants and in a few species of dicots. Over 50 years of study have led to the characterization of the chromosomal locations and coding sequences of almost all the genes involved in BX biosynthesis in a number of cereal species: ZmBx1–ZmBx10a7c in maize, TaBx1–TaBx5, TaGT and Taglu in wheat, ScBx17ScBx5, ScBx6-like, ScGT and Scglu in rye. So far, the ortholog of the maize Bx7 gene has not been identified in the other investigated species. This review aims to summarize the available data on the genetic basis of BXs biosynthesis in cereals.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

09

Opis fizyczny

Article: 176 [12 p.], fig.,ref.

Twórcy

autor
  • Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
autor
  • Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
  • Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland

Bibliografia

  • Bakera B, Makowska B, Groszyk J, Niziołek M, Orczyk W, Bolibok-Brągoszewska H, Hromada-Judycka A, Rakoczy-Trojanowska M (2015) Structural characteristics of ScBx genes controlling the biosynthesis of hydroxamic acids in rye (Secale cereale L.). J Appl Genet 1–12. doi:10.1007/s13353-015-0271-z
  • Barnes JP, Putnam AR (1987) Role of benzoxazinones in allelopathy by rye (Secale cereale L.). J Chem Ecol 13:889–906
  • Barry D, Alfaro D, Darrah LL (1994) Relation of European corn borer (Lepidoptera: pyralidae) leaf feeding resistance and DIMBOA content in maize. Environ Entomol 23:177–182
  • Basse CW (2005) Dissecting defense-related and developmental transcriptional responses of maize during Ustilago maydis infection and subsequent tumor formation. Plant Physiol 138(3):1774–1784
  • Baumeler A, Hesse M, Werner C (2000) Benzoxazinoids–cyclic hydroxamic acids, lactams and their corresponding glucosides in the genus Aphelandra (Acanthaceae). Phytochemistry 53(2):213–222
  • Bohldar K, Wratten SD, Niemeyer HM (1986) Effects of hydroxamic acids on the resistance of wheat to the aphid Sitobion arenae. AAB 109:193–198
  • Bohn M, Groh S, Khairallah MM, Hoisington DA, Utz HF, Melchinger AE (2001) Re-evaluation of the prospects of marker-assisted selection for improving insect resistance against Diatraea spp. in tropical maize by cross validation and independent validation. Theor Appl Genet 103(6–7):1059–1067
  • Boycheva S, Daviet L, Wolfender JL, Fitzpatrick TB (2014) The rise of operon-like gene clusters in plants. Trends Plant Sci 19:447–459
  • Butrón A, Chen YC, Rottinghaus GE, McMullen MD (2010) Genetic variation at bx1 controls DIMBOA content in maize. Theor Appl Genet 120:721–734
  • Cambier V, Hance T, De Hoffmann E (2001) Effects of 1,4-benzoxazin-3-one derivatives from maize on survival and fecundity of Metopolophium dirhodum (Walker) on artificial diet. J Chem Ecol 27:359–370
  • Cardinal AJ, Lee M, Guthrie WD, Bing J, Austin DF, Veldboom LR, Senior ML (2006) Mapping of factors for resistance to leaf-blade feeding by European corn borer (Ostrinia nubilalis) in maize. Maydica 51:93–102
  • Chen C, Chen M (1976) 6-Methoxybenzoxazolinone and triterpenoids from roots of Scoparia dulcis. Phytochemistry 15:1997–1999
  • Chu HY, Wegel E, Osbourn A (2011) The plant genome: an evolutionary view on structure and function. From hormones to secondary metabolism: the emergence of metabolic gene clusters in plants. Plant J 66:66–79
  • Collantes HG, Gianoli E, Niemeyer HM (1999) Defoliation affects chemical defenses in all plant parts of rye seedlings. J Chem Ecol 25:491–499
  • Devos KM, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL, Koebner RMD, Liu CJ, Masojé P, Xie DX, Gale MD (1993) Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet 85:673–680
  • Dutartre L, Hilliou F, Feyereisen R (2012) Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster. BMC Evol Biol 12(1):64
  • Ebisui K, Ishihara A, Hirai N, Iwamura H (1998) Occurrence of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and a β-glucosidase specific for its glucoside in maize seedlings. Z Naturforsch 53c:793–798
  • Epstein WW, Rowsemitt CN, Berger PJ, Negus NC (1986) Dynamics of 6-methoxybenzoxazolinone in winter wheat-effects of photoperiod and temperature. J Chem Ecol 12:2011–2020
  • Feng R, Houseman JG, Downe AER, Atkinson J, Arnason JT (1992) Effects of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and 6-methoxybenzoxazolinone (MBOA) on the detoxification processes in the larval midgut of the European corn borer. Pest Biochem Physiol 44:147–154
  • Frey M, Chomet P, Glawischnig E, Stettner C, Grun S, Winklmair A, Eisenreich W, Bacher A, Meeley RB, Briggs SP, Simcox K, Gierl A (1997) Analysis of a chemical plant defense mechanism in grasses. Science 277:696–699
  • Frey M, Schullehner K, Dick R, Fiesselmann A, Gierl A (2009) Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. Phytochemistry 70:1645–1651
  • Gierl A, Frey M (2001) Evolution of benzoxazinone biosynthesis and indole production in maize. Planta 213:493–498
  • Givovich A, Niemeyer HM (1991) Hydroxamic acids affecting barley yellow dwarf virus transmission by the aphid Rhopalosiphum padi. Entomol Exp Apl 59:79–85
  • Glauser G, Marti G, Villard N, Doyen GA, Wolfender JL, Turlings TC, Erb M (2011) Induction and detoxification of maize 1, 4-benzoxazin-3-ones by insect herbivores. Plant J 68(5):901–911
  • Grün S, Frey M, Gierl A (2005) Evolution of the indole alkaloid biosynthesis in the genus Hordeum: distribution of gramine and DIBOA and isolation of the benzoxazinoid biosynthesis genes from Hordeum lechleri. Phytochemistry 66:1264–1272
  • Hamilton RH (1964) A corn mutant deficient in 2,4-di-hydroxy-7-methoxy-1,4-zenzoxazin-3-one with an altered tolerance of atrazine. Weeds 12:27–30
  • Hanhineva K, Rogachev I, Aura A-M, Aharoni A, Poutanen K, Mykkänen H (2011) Qualitative characterization of benzoxazinoid derivatives in whole grain rye and wheat by LCMS metabolite profiling. J Agric Food Chem 59:921–927
  • Hanhineva K, Keski-Rahkonen P, Lappi J et al (2014) The postprandial plasma rye fingerprint includes benzoxazinoidderived phenylacetamide sulfates. J Nutr. doi:10.3945/jn.113.187237
  • Jonczyk R, Schmidt H, Osterrieder A et al (2008) Elucidation of the final reactions of DIMBOA-glucoside biosynthesis in maize: characterization of Bx6 and Bx7. Plant Physiol 146:1053–1063
  • Kato-Noguchi H (2008) Effects off our benzoxazinoids on gibberellin-induced a-amylase activity in barley seeds. J Plant Physiol 165:1889–1894
  • Klun JA, Tipton CL, Brindley TA (1967) 2, 4-Dihydroxy-7-methoxy-I, 4-benzoxazin-3-one (DIMBOA), an active agent in the resistance of maize to the European corn borer. J Econ Entomol 60(6):1529–1533
  • Kramer VC, Koziel MG (1995) Structure of a maize tryptophan synthase alpha subunit gene with pith enhanced expression. Plant Mol Biol 27(6):1183–1188
  • Kruidhof HM, van Dam NM, Ritz C, Lotz LA, Kropff MJ, Bastiaans L (2014) Mechanical wounding under field conditions: a potential tool to increase the allelopathic inhibitory effect of cover crops on weeds? Eur J Agron 52:229–236
  • La Hovary C (2012) Allelochemicals in Secale cereale: biosynthesis and Molecular biology of benzoxazinones. http://gradworks.umi.com/34/63/3463787.html
  • Landberg R, Andersson SO, Zhang JX et al (2010) Rye whole grain and bran intake compared with refined wheat decreases urinary C-peptide, plasma insulin, and prostate specific antigen in men with prostate cancer. J Nutr 140(12):2180–2186
  • Li X, He K, Zhen-ying Wang, Shu-xiong Bai (2010) Quantitative trait loci for Asian Corn Borer resistance in maize population Mc37 9 Zi330. Agric Sci China 9(1):77–84
  • Long BJ, Dunn GM, Routley DG (1978) Relationship of hydroxamate concentration in maize and field reaction to Helminthosporium turcicum. Crop Sci 18:573–575
  • Makleit P (2005) Changes in cyclic hydroxamic acid content of various rye varieties for the effect of abiotic stress. Acta Biol Szeged 49(1–2):103–104
  • Manuwoto S, Scrrber JM (1985) Consumption and utilization of experimentally altered corn by southern armyworm: iron, nitrogen, and cyclic hydroxamates. J Chem Ecol 11:1469–1483
  • Marcacci S, Raveton M, Ravanel P, Schwitzgue´bel J-P (2005) The possible role of hydroxylation in the detoxification of atrazine in mature vetiver (Chrysopogon zizanioides Nash) grown in hydroponics. Z Naturforsch 60c:427–434
  • Meihls LN, Handrick V, Glauser G, Barbier H, Kaur H, Haribal MM, Jander G (2013) Natural variation in maize aphid resistance is associated with 2, 4-dihydroxy-7-methoxy-1, 4-benzoxazin-3-one glucoside methyltransferase activity. Plant Cell Online 25(6):2341–2355
  • Meyer SLF, Rice CP, Zasada IA (2009) DIBOA: fate in soil and effects on root—knot nematode egg numbers. Soil Biol Biochem 41:1555–1560
  • Nagao T, Otsuka H, Kohda H, Sato T, Yamasaki K (1985) Benzoxazinones from Coix lachryma-jobi. Phytochemistry 24:2959–2962
  • Nie CR, Luo SM, Lin CX, Zeng RS, Huang JH, Wang JW (2005) Status of DIMBOA and phenolic acids in transgenic Bt corn. Aust J Agric Res 56:833–837
  • Niemeyer HM (1988a) Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the Gramineae. Phytochemistry 27:3349–3358
  • Niemeyer HM (1988b) Hydroxamic acid content of Triticum species. Euphytica 37:289–293
  • Niemeyer HM (2009) Hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one: key defense chemicals of cereals. J Agric Food Chem 57:1677–1696
  • Niemeyer HM, Copaja SV, Barrıa BN (1992) The Triticeae as sources of hydroxamic acids, secondary metabolites in wheat conferring resistance against aphids. Hereditas 116:295–299
  • Nikus J, Esen A, Jonsson LMV (2003) Cloning of a plastidic rye (Secale cereale) b-glucosidase cDNA and its expression in Escherichia coli. Physiol Plant 118:337–345
  • Nomura T, Ishihara A, Imaishi H, Endo TR, Ohkawa H, Iwamura H (2002) Molecular characterisation and chromosomal localization of cytochrome P450 genes involved in the biosynthesis of cyclic hydroxamic acids in hexaploid wheat. Mol Genet Genomics 267:210–217
  • Nomura T, Ishihara A, Imaishi H, Ohkawa H, Endo TR, Iwamura H (2003) Rearrangement of the genes for the biosynthesis of benzoxazinones in the evolution of Triticeae species. Planta 217:776–782
  • Nomura T, Ishihara A, Yanagita RC, Endo TR, Iwamura H (2005) Three genomes differentially contribute to the biosynthesis of benzoxazinones in hexaploid wheat. Proc Natl Acad Sci USA 102:16490–16495
  • Nomura T, Ishihara A, Iwamura H, Endo TR (2007) Molecular characterization of benzoxazinone-deficient mutation in diploid wheat. Phytochemistry 68:1008–1016
  • Nomura T, Nasuda S, Kawaura K, Ogihara Y, Kato N, Sato F, Kojima T, Toyoda A, Iwamura H, Endo TR (2008) Structures of the three homoeologous loci of wheat benzoxazinone biosynthetic genes TaBx3 and TaBx4 and characterization of their promoter sequences. Theor Appl Genet 116:373–381
  • Oikawa A, Ishihara A, Iwamura H (2002) Induction of HDMBOAGlc accumulation and DIMBOA-Glc4-O-methyltransferase by jasmonic acid in poaceous plants. Phytochemistry 61:331–337
  • Otsuka H, Hirai Y, Nagao T, Yamasaki K (1988) Anti-inflammatory activity of benzoxazinoids from roots of Coix lachryma-jobi var. Ma-yuen. J Nat Prod 51:74–79
  • Persans MW, Wang J, Schuler MA (2001) Characterization of maize cytochrome P450 monooxygenases induced in response to safeners and bacterial pathogens. Plant Physiol 125:1126–1138
  • Pethô M (2002) Physiological role of the cyclic hydroxamic acids. Acta Biol Szeged 46(3–4):175–176
  • Poschenrieder C, Tolraá RP, Barceló J (2005) A role for cyclic hydroxamates in aluminium resistance in maize? J Inorg Biochem 99(9):1830–1836
  • Poupaert J, Carato P, Colacillo E (2005) 2(3H)-benzoxazolone and bioisostersas ‘‘privileged scaffold’’ in the design of pharmacological probes. Curr Med Chem 12(7):877–885
  • Rad VU, Hüttl R, Lottspeich F, Gierl A, Frey M (2001) Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize. Plant J 28:633–642
  • Rakoczy-Trojanowska M, Groszyk J, Oleniecki T, Orczyk W (2013) Charakterystyka i genetyczne podłoże biosyntezy cyklicznych kwasów hydroksamowych ze szczególnym uwzględnieniem żyta zwyczajnego (Secale cereale L). Konferencja naukowa, Zakopane 4–8 luty
  • Roberts KP, Iyer RA, Prasad G, Liu LT, Lind RE, Hanna PE (1998) Cyclic hydroxamic acid inhibitors of prostate cancer cell growth: selectivity and structure activity relationships. Prostate 34:92–99
  • Rosenfeld MJ, Forsberg SR (2009). Compounds for use in weight loss and appetite suppression in humans. US 7, 507,731 B2. March 24
  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
  • Salse J, Abrouk M, Bolot S, Guihot N, Courcelle E, Faraut T, Waugh R, Close TJ, Messing J, Feuillet C (2009) Reconstruction of monocotyledonous proto-chromosomes reveals faster evolution in plants than in animals. Proc Natl Acad Sci USA 106:14908–14913
  • Schullehner K, Dick R, Vitzthum F, Schwab W, Brandt W, Frey M, Gierl A (2008) Benzoxazinoid biosynthesis in dicot plants. Phytochemistry 69:2668–2677
  • Sicker D, Frey M, Schulz M, Gierl A (2000) Role of natural benzoxazinones in the survival strategy of plants. Int Rev Cytol 198:319–346
  • Søltoft M, Jørgensen LN, Svensmark B, Fomsgaard IS (2008) Benzoxazinoid concentrations show correlation with Fusarium Head Blight resistance in Danish wheat varieties. Biochem Syst Ecol 36:245–259
  • Sue M, Yamazaki K, Yajima S, Nomura T, Matsukawa T, Iwamura H, Miyamoto T (2006) Molecular and structural characterization of hexameric b-D-glucosidases in wheat and rye. Plant Physiol 141:1237–1247
  • Sue M, Nakamura C, Nomura T (2011) Dispersed benzoxazinone gene cluster: molecular characterization and chromosomal localization of glucosyltransferase and glucosidase genes in wheat and rye. Plant Physiol 157:985–997
  • Swigoňová Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL, Messing J (2004) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923
  • Tabaglio V, Gavazzi C, Schulz M, Marocco A (2008) Alternative weed control using the allelopathic effect of natural benzoxazinoids from rye mulch. Agron Sustain Dev 28(3):397–401
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729
  • Tanwir F, Fredholm M, Gregersen PL, Fomsgaard IS (2013) Comparison of the levels of bioactive benzoxazinoids in different wheat and rye fractions and the transformation of these compounds in homemade foods. Food Chem 141:444–450
  • Virtanen AI, Hietala PK (1955a) 2(3)-Benzoxazolinone an antifusarium factor in rye seedlings. Acta Chem Scand 9:1543–1544
  • Virtanen AI, Hietala PK (1955b) The structure of the precursors of benzoxazolinone in rye plants. II. Suomen. Kemistilehti 32:252
  • Wahlroos O, Virtanen AI (1959) The precursors of 6-methoxybenzoxazolinone in maize and wheat plants, their isolation and some of their properties. Acta Chem Scand 13(9):1906–1908
  • Wolf RB, Spencer GF, Plattner RD (1985) Benzoxazolinone, 2,4-dihydroxy-1,4-benzoxazin-3-one, and its glucoside from Acanthus mollis seeds inhibit velvetleaf germination and growth. J Nat Prod 48:59–63
  • Zasada IA, Meyer SLF, Halbrendt JM, Rice C (2005) Activity of hydroxamic acids from Secale cereale against the plant-parasitic nematodes Meloidogyne incognita and Xiphinema americanum. Phytopathology 95:1116–1121
  • Zhang X, Habib FK, Ross M, Burger U, Lewenstein A, Rose K et al (1995) Isolation and characterization of a cyclic hydroxamic acid from a pollen extract, which inhibits cancerous cell growth in vitro. J Med Chem 38(4):735–738
  • Zheng Y, Szustakowski JD, Fortnow L, Roberts RJ, Kasif S (2002) Computational identification of operons in microbial genomes. Genome Res 12:1221–1230
  • Zúñiga GE, Argandofia VH, Niemeyer HM, Corcuera LJ (1983) Hydroxamic acid content in wild and cultivated Gramineae. Phytochemtstry 22:2665–2668

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6fc0b755-dc20-47fd-bfdc-3f41231c624b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.