PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 75 | 2 |

Tytuł artykułu

Effect of MRI tags: SPIO nanoparticles and 19F nanoemulsion on various populations of mouse mesenchymal stem cells

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Transplantation of mesenchymal stem cells (MSCs) has emerged as a promising strategy for the treatment of myriad human disorders, including several neurological diseases. Superparamagnetic iron oxide nanoparticles (SPION) and fluorine nanoemulsion (19F) are characterized by low toxicity and good sensitivity, and, as such, are among the most frequently used cell-labeling agents. However, to date, their impact across the various populations of MSCs has not been comprehensively investigated. Thus, the impact of MRI tags (independent variable) has been set as a primary endpoint. The various populations of mouse MSCs in which the effect of tag was investigated consisted of (1) tissue of cell origin: bone marrow vs. adipose tissue; (2) age of donor: young vs. old; (3) cell culture conditions: hypoxic vs. normal vs. normal + ascorbic acid (AA); (4) exposure to acidosis: yes vs. no. The impact of those populations has been also analyzed and considered as secondary endpoints. The experimental readouts (dependent variables) included: (1) cell viability; (2) cell size; (3) cell doubling time; colony formation; (5) efficiency of labeling; and (6) cell migration. We did not identify any impact of cell labeling for these investigated populations in any of the readouts. In addition, we found that the harsh microenvironment of injured tissue modeled by a culture of cells in a highly acidic environment has a profound effect on all readouts, and both age of donor and cell origin tissue also have a substantial influence on most of the readouts, while oxygen tension in the cell culture conditions has a smaller impact on MSCs. A detailed characterization of the factors that influence the quality of MSCs is vital to the proper pursuit of preclinical and clinical studies.

Wydawca

-

Rocznik

Tom

75

Numer

2

Opis fizyczny

p.144-159,fig.,ref.

Twórcy

autor
  • Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
  • Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
  • Stem Cell Laboratory, University of the Punjab, Lahore, Pakistan
autor
  • Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
  • Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
autor
  • Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
  • Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
autor
  • Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
  • Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
  • Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
autor
  • Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
  • Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
  • NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
  • Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland

Bibliografia

  • Addicott B, Willman M, Rodriguez J, Padgett K, Han D, Berman D, Hare JM, Kenyon NS (2011) Mesenchymal stem cell labeling and in vitro MR characterization at 1.5 T of new SPIO contrast agent: Molday ION Rhodamine-B. Contrast Media Mol Imaging 6: 7-18.
  • Ahrens ET, Helfer BM, O'Hanlon CF, Schirda C (2014) Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. Magn Reson Med 72: 1696¬1701.
  • Bae SH, Ryu H, Rhee KJ, Oh JE, Baik SK, Shim KY, Kong JH, Hyun SY, Pack HS, Im C, Shin HC, Kim YM, Kim HS, Eom YW, Lee JI (2015) l-Ascorbic acid 2-phosphate and fibroblast growth factor-2 treatment maintains dif¬ferentiation potential in bone marrow-derived mesenchy¬mal stem cells through expression of hepatocyte growth factor. Growth Factors 33: 1-8.
  • Barczewska M, Wojtkiewicz J, Habich A, Janowski M, Adamiak Z, Holak P, Matyjasik H, Bulte JW, Maksym¬owicz W, Walczak P (2013) MR monitoring of mini¬mally invasive delivery of mesenchymal stem cells into the porcine intervertebral disc. PLoS One 8: e74658.
  • Beane OS, Fonseca VC, Cooper LL, Koren G, Darling EM (2014) Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchy- mal stem/stromal cells. PLoS One 9: e115963.
  • Berman SC, Galpoththawela C, Gilad AA, Bulte JW, Walczak P (2011) Long-term MR cell tracking of neural stem cells grafted in immunocompetent versus immuno- deficient mice reveals distinct differences in contrast between live and dead cells. Magn Reson Med 65: 564¬574.
  • Bortolotti F, Ukovich L, Razban V, Martinelli V, Ruozi G, Pelos B, Dore F, Giacca M, Zacchigna S (2015) In Vivo therapeutic potential of mesenchymal stromal cells depends on the source and the isolation procedure. Stem Cell Reports 4: 332-339.
  • Bulte JW, De Jonge MW, Kamman RL, Go KG, Zuiderveen F, Blaauw B, Oosterbaan JA, The TH, de Leij L (1992) Dextran-magnetite particles: contrast-enhanced MRI of blood-brain barrier disruption in a rat model. Magn Reson Med 23: 215-223.
  • Bustos ML, Huleihel L, Kapetanaki MG, Lino-Cardenas CL, Mroz L, Ellis BM, McVerry BJ, Richards TJ, Kaminski N, Cerdenes N, Mora AL, Rojas M (2014) Aging mesenchymal stem cells fail to protect because of impaired migration and antiinflammatory response. Am J Respir Crit Care Med 189: 787-798.
  • Choi JR, Pingguan-Murphy B, Wan Abas WA, Noor Azmi MA, Omar SZ, Chua KH, Wan Safwani WK (2014) Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells. Biochem Biophys Res Commun 448: 218¬224.
  • Choudhery MS, Badowski M, Muise A, Pierce J, Harris DT (2014) Donor age negatively impacts adipose tissue-de¬rived mesenchymal stem cell expansion and differentia¬tion. J Transl Med 12: 8.
  • Cui L, Kerkela E, Bakreen A, Nitzsche F, Andrzejewska A, Nowakowski A, Janowski M, Walczak P, Boltze J, Lukomska B, Jolkkonen J (2015) The cerebral embolism evoked by intra-arterial delivery of allogeneic bone mar¬row mesenchymal stem cells in rats is related to cell dose and infusion velocity. Stem Cell Res Ther 6: 11.
  • Das M, Sundell IB, Koka PS (2013) Adult mesenchymal stem cells and their potency in the cell-based therapy. J Stem Cells 8: 1-16.
  • Dong Y, Wang S, Zhang T, Zhao X, Liu X, Cao L, Chi Z (2013) Ascorbic acid ameliorates seizures and brain damage in rats through inhibiting autophagy. Brain Res 1535: 115-123.
  • Dos Santos F, Andrade PZ, Boura JS, Abecasis MM, da Silva CL, Cabral JM (2010) Ex vivo expansion of human mesenchymal stem cells: a more effective cell prolifera¬tion kinetics and metabolism under hypoxia. J Cell Physiol 223: 27-35.
  • Drela K, Sarnowska A, Siedlecka P, Szablowska- Gadomska I, Wielgos M, Jurga M, Lukomska B, Domanska-Janik K (2014) Low oxygen atmosphere facilitates proliferation and maintains undifferentiated state of umbilical cord mesenchymal stem cells in an hypoxia inducible factor-dependent manner. Cytotherapy 16: 881-892.
  • Fan J, Tan Y, Jie L, Wu X, Yu R, Zhang M (2013) Biological activity and magnetic resonance imaging of superpara- magnetic iron oxide nanoparticles-labeled adipose-de¬rived stem cells. Stem Cell Res Ther 4: 44.
  • Gala K, Burdzinska A, Idziak M, Makula J, Paczek L (2011) Characterization of bone-marrow-derived rat mesenchy¬mal stem cells depending on donor age. Cell Biol Int 35: 1055-1062.
  • Gorelik M, Orukari I, Wang J, Galpoththawela S, Kim H, Levy M, Gilad AA, Bar-Shir A, Kerr DA, Levchenko A, Bulte JW, Walczak P (2012) Use of MR cell tracking to evaluate targeting of glial precursor cells to inflammatory tissue by exploiting the very late antigen-4 docking receptor. Radiology 265: 175-185.
  • Grayson WL, Zhao F, Izadpanah R, Bunnell B, Ma T (2006) Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol 207: 331-339.
  • Grayson WL, Zhao F, Bunnell B, Ma T (2007) Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun 358: 948-953.
  • He T, Wang Y, Xiang J, Zhang H (2014) In vivo tracking of novel SPIO-Molday ION rhodamine-B-labeled human bone marrow-derived mesenchymal stem cells after lenti- virus- mediated COX-2 silencing: a preliminary study. Curr Gene Ther 14: 136-145.
  • Heidari B, Shirazi A, Akhondi MM, Hassanpour H, Behzadi B, Naderi MM, Sarvari A, Borjian S (2013) Comparison of proliferative and multilineage differentiation potential of sheep mesenchymal stem cells derived from bone mar¬row, liver, and adipose tissue. Avicenna J Med Biotechnol 5: 104-117.
  • Jagetia GC, Rajanikant GK, Mallikarjun Rao KV (2007) Ascorbic acid increases healing of excision wounds of mice whole body exposed to different doses of gamma- radiation. Burns 33: 484-494.
  • Janowski M, Walczak P, Date I (2010) Intravenous route of cell delivery for treatment of neurological disorders: a meta-analysis of preclinical results. Stem Cells Dev 19: 5-16.
  • Janowski M, Bulte JW, Walczak P (2012) Personalized nanomedicine advancements for stem cell tracking. Adv Drug Deliv Rev 64: 1488-1507.
  • Janowski M, Lyczek A, Engels C, Xu J, Lukomska B, Bulte JW, Walczak P (2013) Cell size and velocity of injection are major determinants of the safety of intracarotid stem cell transplantation. J Cereb Blood Flow Metab 33: 921-927.
  • Janowski M, Walczak P, Kropiwnicki T, Jurkiewicz E, Domanska-Janik K, Bulte JW, Lukomska B, Roszkowski M (2014) Long-term MRI cell tracking after intraven- tricular delivery in a patient with global cerebral ischemia and prospects for magnetic navigation of stem cells within the CSF. PLoS One 9: e97631.
  • Janowski M, Bulte JW, Handa JT, Rini D, Walczak P (2015) Using stem cells to prevent the progression of myopia - a concept. Stem Cells 33: 2104-2113.
  • Jiang S, Kh Haider H, Ahmed RP, Idris NM, Salim A, Ashraf M (2008) Transcriptional profiling of young and old mes- enchymal stem cells in response to oxygen deprivation and reparability of the infarcted myocardium. J Mol Cell Cardiol 44: 582-596.
  • Kang K, Sun L, Xiao Y, Li SH, Wu J, Guo J, Jiang SL, Yang L, Yau TM, Weisel RD, Radisic M, Li RK (2012) Aged human cells rejuvenated by cytokine enhancement of biomaterials for surgical ventricular restoration. J Am Coll Cardiol 60: 2237-2249.
  • Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, Bulte JW,
  • Petrou P, Ben-Hur T, Abramsky O, Slavin S (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67: 1187-1194.
  • Kassis I, Vaknin-Dembinsky A, Bulte J, Karussis D (2010) Effects of supermagnetic iron oxide labeling on the major functional properties of human mesenchymal stem cells from multiple sclerosis patients. Int J Stem Cells 3: 144¬153.
  • Lee AY, Lee J, Kim CL, Lee KS, Lee SH, Gu NY, Kim JM, Lee BC, Koo OJ, Song JY, Cha SH (2015) Comparative studies on proliferation, molecular markers and differ¬entiation potential of mesenchymal stem cells from various tissues (adipose, bone marrow, ear skin, abdom¬inal skin, and lung) and maintenance of multipotency during serial passages in miniature pig. Res Vet Sci 100: 115-124
  • Li J, Dong J, Zhang ZH, Zhang DC, You XY, Zhong Y, Chen MS, Liu SM (2013) miR-10a restores human mesenchy¬mal stem cell differentiation by repressing KLF4. J Cell Physiol 228: 2324-2336.
  • Li L, Li L, Zhang Z, Jiang Z (2015) Hypoxia promotes bone marrow-derived mesenchymal stem cell proliferation through apelin/APJ/autophagy pathway. Acta Biochim Biophys Sin (Shanghai) 47: 362-367
  • Li Y, Charif N, Mainard D, Bensoussan D, Stoltz JF, de Isla N (2014) Donor's age dependent proliferation decrease of human bone marrow mesenchymal stem cells is linked to diminished clonogenicity. Biomed Mater Eng 24 (1 Suppl): 47-52.
  • Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2: 329-333.
  • Lindner U, Kramer J, Beherends J, Fuchs F, Wendler NO, Rohwedel J, Schlenke P (2010) Hypoxia enhances pro¬liferation and attenuates differentiation capacity of human mesenchymal stromal cells - and prolongs their lifespan. J Stem Cells Regen Med 6: 76.
  • Lotfy A, Salama M, Zahran F, Jones E, Badawy A, Sobh M (2014) Characterization of mesenchymal stem cells derived from rat bone marrow and adipose tissue: a com¬parative study. Int J Stem Cells 7: 135-142.
  • Madonna R, Taylor DA, Geng YJ, De Caterina R, Shelat H, Perin EC, Willerson JT (2013) Transplantation of mesen¬chymal cells rejuvenated by the overexpression of telom- erase and myocardin promotes revascularization and tis¬sue repair in a murine model of hindlimb ischemia. Circ Res 113: 902-914.
  • Marycz K, Smieszek A, Grzesiak J, Donesz-Sikorska A, Krzak-Ros J (2013) Application of bone marrow and adipose-derived mesenchymal stem cells for testing the biocompatibility of metal-based biomaterials functional- ized with ascorbic acid. Biomed Mater 8: 065004.
  • Meric A, Yenigun A, Yenigun VB, Dogan R, Ozturan O (2013) Comparison of chondrocytes produced from adi¬pose tissue-derived stem cells and cartilage tissue. J Craniofac Surg 24: 830-833.
  • Mohamad-Fauzi N, Ross PJ, Maga EA, Murray JD (2015) Impact of source tissue and ex vivo expansion on the characterization of goat mesenchymal stem cells. J Anim Sci Biotechnol 6: 1.
  • Murakami M, Hayashi Y, Iohara K, Osako Y, Hirose Y, Nakashima M (2014) Trophic effects and regenerative potential of mobilized Mesenchymal Stem Cells from bone marrow and adipose tissue as alternative cell sourc¬es for pulp/dentin regeneration. Cell Transplant [Epub ahead of print].
  • Nekanti U, Dastidar S, Venugopal P, Totey S, Ta M (2010) Increased proliferation and analysis of differential gene expression in human Wharton's jelly-derived mesenchy- mal stromal cells under hypoxia. Int J Biol Sci 6: 499¬512.
  • Orlowski P, Al-Senani F, Summers P, Byrne J, Noble JA, Ventikos Y (2011) Towards treatment planning for the embolization of arteriovenous malformations of the brain: intranidal hemodynamics modeling. IEEE Trans Biomed Eng 58: 1994-2001.
  • Peng L, Shu X, Lang C, Yu X (2015) Effects of hypoxia on proliferation of human cord blood-derived mesen¬chymal stem cells. Cytotechnology [Epub ahead of print].
  • Potdar PD, D'Souza SB (2010) Ascorbic acid induces in vitro proliferation of human subcutaneous adipose tissue derived mesenchymal stem cells with upregulation of embryonic stem cell pluripotency markers Oct4 and SOX 2. Hum Cell 23: 152-155.
  • Quittet MS, Touzani O, Sindji L, Cayon J, Fillesoye F, Toutain J, Divoux D, Marteau L, Lecocq M, Roussel S, Montero-Menei CN, Bernaudin M (2015) Effects of mes- enchymal stem cell therapy, in association with pharma¬cologically active microcarriers releasing VEGF, in an ischaemic stroke model in the rat. Acta Biomater 15: 77-88.
  • Ren Z, Wang J, Zou C, Guan Y, Zhang YA (2011) Labeling of cynomolgus monkey bone marrow-derived mesenchy- mal stem cells for cell tracking by multimodality imag¬ing. Sci China Life Sci 54: 981-987.
  • Ribot EJ, Gaudet JM, Chen Y, Gilbert KM, Foster PJ (2014) In vivo MR detection of fluorine-labeled human MSC using the bSSFP sequence. Int J Nanomedicine 9: 1731— 1739.
  • Ruiz-Cabello J, Walczak P, Kedziorek DA, Chacko VP, Schmieder AH, Wickline SA, Lanza GM, Bulte JW (2008) In vivo "hot spot" MR imaging of neural stem cells using fluorinated nanoparticles. Magn Reson Med 60: 1506-1511.
  • Shiratsuki S, Terai S, Murata Y, Takami T, Yamamoto N, Fujisawa K, Burganova G, Quintanilha LF, Sakaida I (2015) Enhanced survival of mice infused with bone marrow-derived as compared with adipose-derived mes¬enchymal stem cells. Hepatol Res [Epub ahead of print], doi: 10.1111/hepr. 12507.
  • Song H, Song BW, Cha MJ, Choi IG, Hwang KC (2010) Modification of mesenchymal stem cells for cardiac regeneration. Expert Opin Biol Ther 10: 309-319.
  • Stern-Straeter J, Bonaterra GA, Juritz S, Birk R, Goessler UR, Bieback K, Bugert P, Schultz J, Hormann K, Kinscherf R, Faber A (2014) Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells. Int J Mol Med 33: 160¬170.
  • Stevanovic M, Bracko I, Milenkovic M, Filipovic N, Nunic J, Filipic M, Uskokovic DP (2014) Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity. Acta Biomater 10: 151-162.
  • Taran R, Mamidi MK, Singh G, Dutta S, Parhar IS, John JP, Bhonde R, Pal R, Das AK (2014) In vitro and in vivo neurogenic potential of mesenchymal stem cells isolated from different sources. J Biosci 39: 157-169.
  • Tarnowski M, Koryciak-Komarska H, Czekaj P, Sebesta R, Czekaj TM, Urbanek K, Likus W, Malinowska-Kolodziej I, Plewka D, Nowaczyk-Dura G, Wiaderkiewicz R, Sieron AL (2007) The comparison of multipotential for differentiation of progenitor mesenchymal-like stem cells obtained from livers of young and old rats. Folia Histochem Cytobiol 45: 245-254.
  • Thu MS, Bryant LH, Coppola T, Jordan EK, Budde MD, Lewis BK, Chaudhry A, Ren J, Varma NR, Arbab AS, Frank JA (2012) Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell tracking by magnetic resonance imaging. Nat Med 18: 463-467.
  • Vu Q, Xie K, Eckert M, Zhao W, Cramer SC (2014) Meta¬analysis of preclinical studies of mesenchymal stromal cells for ischemic stroke. Neurology 82: 1277-1286.
  • Wei C, Liu X, Tao J, Wu R, Zhang P, Bian Y, Li Y, Fang F, Zhang Y (2014) Effects of vitamin C on characteristics retaining of in vitro-cultured mouse adipose-derived stem cells. In Vitro Cell Dev Biol Anim 50: 75-86.
  • Wei F, Qu C, Song T, Ding G, Fan Z, Liu D, Liu Y, Zhang C, Shi S, Wang S (2012) Vitamin C treatment promotes mesenchymal stem cell sheet formation and tissue regen¬eration by elevating telomerase activity. J Cell Physiol 227: 3216-3224.
  • Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF (2013) Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 34: 747-754.
  • Wu LW, Wang YL, Christensen JM, Khalifian S, Schneeberger S, Raimondi G, Cooney DS, Lee WP, Brandacher G (2014) Donor age negatively affects the immunoregula- tory properties of both adipose and bone marrow derived mesenchymal stem cells. Transpl Immunol 30: 122-127.
  • Yang HJ, Kim KJ, Kim MK, Lee SJ, Ryu YH, Seo BF, Oh DY, Ahn ST, Lee HY, Rhie JW (2015) The stem cell potential and multipotency of human adipose tissue-de¬rived stem cells vary by cell donor and are different from those of other types of stem cells. Cells Tissues Organs 199: 373-383.
  • Zhang R, Li J, Xie J (2014) Efficient In vitro labeling rabbit bone marrow-derived mesenchymal stem cells with SPIO and differentiating into neural-like cells. Mol Cells 37: 650-655.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6faf68b6-3b73-452d-8638-d087d2c6bff0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.