PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 1 |

Tytuł artykułu

Selection of in-situ desulfurizers for chicken manure biogas and prediction of dosage

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The hydrogen sulfide (H₂S) in biogas is poisonous and corrosive, so it is usually removed in the early stage of biogas upgrading. Dosing iron compounds directly into the anaerobic fermenter is an in-situ method for rough desulphurization. But it is difficult to estimate the appropriate amount of iron compound to add and overdosing is usually inevitable. Five kinds of iron compounds (FeCl₂, FeCl₃, Fe(OH)₃, Fe₂O₃, and FeSO₄) were applied as in-situ desulfurizers in chicken manure fermentation to reduce H₂S emissions. Biogas yield, CH₄ concentration, and H₂S concentration were examined to evaluate the performance of these desulfurizers. Among these five desulfurizers, FeCl₂, FeCl₃, and Fe(OH)₃ showed better performance; the desulfurization rates were all above 98.5% when the addition was 16 mmol L⁻¹. In order to establish the prediction model of the required amount for in-situ desulfurizer, it is assumed that the dosage of desulfurizer could be simply divided into two parts: one part for consumption of released H₂S, and the other part for guaranteeing a certain desulfurizing level. Under this assumption, the prediction formulas were fitted based on the bottle experiments and applied in a 5 L fermentation system. The required desulfurization levels (H₂S concentration) when adding FeCl₂, FeCl₃, and Fe(OH)₃ were set to 120, 200, and 100 ppmv, respectively. After adding the calculated dosage of the three in-situ desulfurizers, the actual H₂S concentrations were 163.0, 180.3, and 89.4 ppmv, respectively, which were relatively closed to the required desulfurization levels.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

1

Opis fizyczny

p.155-161,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization Institute of New Energy, China University of Petroleum, Beijing 102249, China
autor
  • State Key Laboratory of Heavy Oil Processing, Institute of New Energy, Beijing Key Laboratory
autor
  • Biochemical Conversion Department, Deutsches Biomasseforschungszentrum gGmbH (DBFZ), Torgauer Straße 116, 04347 Leipzig, Germany
autor
  • State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization Institute of New Energy, China University of Petroleum, Beijing 102249, China
autor
  • State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization Institute of New Energy, China University of Petroleum, Beijing 102249, China
autor
  • State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization Institute of New Energy, China University of Petroleum, Beijing 102249, China

Bibliografia

  • 1. Ryckebosch E., Drouillon M., Vervaeren H. Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35, 1633, 2011.
  • 2. Andersson F.A.T., Karlsson A., Svensson B.H., Ejlertsson J. Occurrence and abatement of volatile sulfur compounds during biogas production. J. Air Waste Manage. Assoc. 54, 855, 2004.
  • 3. Schieder D., Quicker P., Schneider R., Winter H., Prechtl S., Faulstich M. Microbiological removal of hydrogen sulfide from biogas by means of a separate biofilter system: experience with technical operation. Water Sci. Technol. 48, 209, 2003.
  • 4. Weithäuser M., Scholwin F., Fischer E.R., Grope J., Weidele T., Gattermann H. Gas processing and options for utilisation. In Guide to Biogas - From production to use; Fachagentur Nachwachsende Rohstoffe e. V. (FNR): Gülzow, 115-140, 2010.
  • 5. Abatzoglou N., Boivin S. A review of biogas purification processes. Biofuels, Bioprod. Biorefin. 3, 42, 2009.
  • 6. Zhou Q., Jiang X., Li X., Jiang W. The control of H₂S in biogas using iron ores as in situ desulfurizers during anaerobic digestion process. Appl. Microbiol. Biotechnol. 100, 8179, 2016.
  • 7. Zhang L., Keller J., Yuan Z. Inhibition of sulfatereducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing. Water Res. 43, 4123, 2009.
  • 8. Sun J., Pikaar L., Sharma K.R., Keller J., Yuan Z. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge. Water Res. 71, 150, 2015.
  • 9. Firer D., Friedler E., Lahav O. Control of sulfide in sewer systems by dosage of iron salts: comparison between theoretical and experimental results, and practical implications. Sci. Total Environ. 392, 145, 2008.
  • 10. APHA. Solids. In Standard Methods for the Examination of Water and Wastewater, 20th ed; American Public Health Association: Washington, D.C., 2540, 1998.
  • 11. Friehe J., Weiland P., Schattauer A. Fundamentals of anaerobic digestion. In Guide to Biogas-From production to use; Fachagentur Nachwachsende Rohstoffe e. V. (FNR): Gülzow, 21-31, 2010.
  • 12. Takashima M., Speece R., Parkin G.F. Mineral requirements for methane fermentation. Crit. Rev. Env. Sci. Tec. 19, 465, 1990.
  • 13. Demirel B., Scherer P. Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass Bioenergy 35, 992, 2011.
  • 14. Casals E., Barrena R., García A., González E., Delgado L., Busquets-Fité M., Font X., Arbiol J., Glatzel P., Kvashnina K. Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production. Small 10, 2801, 2014.
  • 15. Jing Z., Hu Y., Niu Q., Liu Y., Li Y.Y., Wang X.C. UASB performance and electron competition between methane-producing archaea and sulfate-reducing bacteria in treating sulfate-rich wastewater containing ethanol and acetate. Bioresour. Technol. 137, 349, 2013.
  • 16. Yang S.L., Tang Y.Q., Gou M., Jiang X. Effect of sulfate addition on methane production and sulfate reduction in a mesophilic acetate-fed anaerobic reactor. Appl. Microbiol. Biotechnol. 99, 3269, 2015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6f9ad3a2-3874-42df-9372-3014d4bc5e98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.