Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 6 |

Tytuł artykułu

Salinity variability of soda meadow alkaline soil in different depths of subsurface pipe

Warianty tytułu

Języki publikacji



The study investigates the impact of subsurface pipes at different depths on physicochemical properties of soda meadow alkaline soil. Field experiments were carried out in 5 treatments: CK (no treatment), CK1 (treatment with comprehensive supplementary measures: subsoiling to 0.6 m and applying farm manure in the amount of 34 m³/hm², then mulching with sandy soil of 500 m³/hm²), and 3 treatments of comprehensive supplementary measures combined with subsurface pipes at different depths (H1 = 0.8 m, H2 = 1.0 m, and H3 = 1.2 m). The results suggest that soil permeability, organic matter content, available nitrogen, available potassium, and cation exchange capacity (CEC) in all treatments were significantly improved except for CK. The application of comprehensive supplementary measures improved soil pH, electrical conductivity (EC), total salt content (TS), total alkalinity (TA), and sodium adoption rate (SAR). Compared to CK1, treatments of H1, H2, and H3 decreased TS, TA, and exchangeable sodium percentage (ESP). Moreover, the treatment with shallow buried pipe (H1 = 0.8m) decreased more in soil pH, EC, and SAR, and promoted more in rice yield than the other treatments. These results suggest that shallow buried subsurface pipe (0.8 m in depth and 5 m in space) has the best amelioration in soda saline-alkali soil region, when the same rice-planting and comprehensive supplementary measures were adopted.

Słowa kluczowe








Opis fizyczny



  • Jilin Agricultural University, Changchun, China
  • Jilin Agricultural University, Changchun, China
  • School of Life Science, Anhui University, Hefei, China
  • Da'an Land and Resources Bureau, Da'an, China
  • Jilin Agricultural University, Changchun, China
  • Land Consolidation and Rehabilitation Center of Jilin Province, Changchun, China
  • Da'an Land and Resources Bureau, Da'an, China
  • Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Land and Resources, Beijing, China
  • Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Land and Resources, Beijing, China
  • Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Land and Resources, Beijing, China


  • 1. MENG Q.F., Li D.W., ZHANG J., ZHOU L.R., MA X.F., WANG H.Y., WANG G.C. Soil properties and corn (Zea mays L.) production under manure application combined with deep tillage management in solonetzic soils of Songnen Plain. Northeast China. J. Integr. Agr. 15 (4), 879, 2016.
  • 2. SUN G.Y., WANG H.X. Large scale development to salinealkali soil and risk control for the Songnen Plain. Resour. Sci. 38 (3), 0407, 2016 [In Chinese].
  • 3. KANG Y.H., LIU S.H., WAN S.Q., WANG R.S. Assessment of soil enzyme activities of saline – sodic soil under drip irrigation in the Songnen plain. J. Paddy Water Environ. 11 (1-4), 87, 2013.
  • 4. SHI W., TAKANO T., LIU S.K. Isolation and characterization of novel bacterial taxa from extreme alkali-saline soil. World J. Microbiol. Biotechnol. 28 (5), 2147, 2012.
  • 5. CHI C.M., WANG Z.C. Characterizing salt-affected soils of Songnen Plain using saturated paste and 1:5 soil-to-water extraction methods. Arid Land Res Manag. 24 (1), 1, 2010.
  • 6. LIU S.H., KANG Y.H., WAN S.Q., WANG Z.C., LIANG Z.W., SUN X.J. Water and salt regulation and its effects on Leymus chinensis, growth under drip irrigation in salinesodic soils of the Songnen Plain. J. Agr. Water Manage. 98 (9), 1469, 2011.
  • 7. SHAYGAN M., READING L.P., BAUMGARTL T. Effect of physical amendments on salt leaching characteristics for reclamation. J. Geoderma, 292, 96, 2017.
  • 8. CHI C.M., ZHAO C.W., SUN X.J., WANG Z.C. Reclamation of saline-sodic soil properties and improvement of rice (Oriza sativa L.) growth and yield using desulfurized gypsum in the west of Songnen Plain, northeast China. J. Geoderma, 187-188, 24, 2012.
  • 9. KHAN H.R., RAHMAN S., HUSSAIN M.S., BLUME H. Response of rice to basic slag, lime, and leaching in two saline-acid sulfate soils in pot experiments. J. Plant Nutr. Soil Sci., 159, 549, 1996.
  • 10. SHARMA A., SINGH P., KUMAR S., KASHYAP P.L., SRIVASTAVA A.K., CHAKDAR H., SINGH R.N., KAUSHIK E., SAXENA A.K. Deciphering diversity of salt-tolerant bacilli from saline soils of easternindo-gangetic plains of india. Geomicrobiogogy. J. 32, 170, 2015.
  • 11. WU Y.P., LI Y.F., ZHENG C.Y. Organic amendment application influence soil organism abundance in saline alkali soil. Eur. J. Soil Biol. 54, 32, 2013.
  • 12. HAMMER E.C., NASR H., WALLANDER H. Effects of different organic materials and mineral nutrients on arbuscular mycorrhizal fungal growth in a Mediterranean saline dryland. Soil Biol. Biochem. 43 (11), 2332, 2011.
  • 13. WANG T., AN F.H., DOU S., ZHANG Y.G., WANG C.Y. Effect of subsoiling on physical and chemical properties of soda meadow alkaline with being buried subsurface pipe. J. Jilin Agr. University. 34 (5), 545, 2012 [In Chinese].
  • 14. DEELSTRA J. Climate change and subsurface drainage design: results from a small 377 field-scale catchment in south-western Norway. Acta Agr. Scand. 65, 58, 2015.
  • 15. NOVAK S. M., PORTAL J. M., SCHIAVON M. Effects of soil type upon metolachlor losses in subsurface drainage. Chemosphere. 42 (3), 235, 2001.
  • 16. KING K.W., WILLIAMS M.R., MACRAE M.L., FAUSEY N.R., FRANKENBERGER J., SMITH D.R., KLEINMAN P.J.A., BROWN L.C. Phosphorus Transport in Agricultural Subsurface Drainage: A Review. J. Environ. Qual. 44 (2), 467, 2015.
  • 17. GUNN K., FAUSEY N., SHANG Y., SHEDEKAR V., GHANE E., WAHL M., BROWN L. Subsurface drainage volume reduction with drainage water management: Case studies in Ohio, USA. Agr. Water Manage. 149, 131, 2015.
  • 18. DARZI-NAFTCHALI A., MIRLATIFI S., SHAHNAZARI A., EJLALI F., MAHDIAN M. Effect of subsurface drainage on water balance and water table in poorly drained paddy fields. Agr. Water Manage. 130, 61, 2013.
  • 19. RITZEMA H., SATYANARAYANA T., RAMAN S., BOONSTRA J. Subsurface drainage to combat waterlogging and salinity in irrigated lands in India: Lessons learned in farmers’ fields. Agr. Water Manage. 95 (3), 179, 2008.
  • 20. LIU Z.Y. Application of subsurface drains in the Inland and arid and heavy saline area of the XinJiang uygur autonomous region. Irrigation drainage small hydropower station. 7, 9, 1994 [In Chinese].
  • 21. RAO K.V.R., BHATTACHARYA A.K. Salinity distribution in paddy root zone under subsurface drainage. Agr. Water Manage. 48 (2), 169, 2001.
  • 22. WISKOW E., PLOEG R.V.D. Calculation of drain spacings for optimal rainstorm flood control. J. Hydrol. 272, 163, 2003.
  • 23. FURUKAWA Y.,SHIRATORI Y., INUBUSHI K. Depression of methane production potential in paddy soils by subsurface drainage systems. Soil Sci. Plant Nutr. 54 (6), 950, 2008.
  • 24. SINGH R., HELMERS M.J., QI Z.M. Calibration and validation of drain mode to design subsurface drainage systems for Iowa’s tile landscapes. Agr. Water. Manage. 85 (3), 221, 2006.
  • 25. TIAN Y.F., DOU S., ZHANG Y.G., WANG C.Y., WU J.S. Improvement effects of subsurface pipe with different spacing on sodic-alkali soil. Transactions Chinese Society of Agr. Eng. 29 (12), 145, 2013 [In Chinese].
  • 26. CZABAN J., WROBLEWSKA B., NIEDZ WIECJI J., SULEK A. Relationships between numbers of microbial communities in polish agricultural soils and properties of these soils, paying special attention to xerophilic/xerotolerant fungi. Pol. J. Environ. Stud. 19 (6), 1171, 2010.
  • 27. GAO L., SHEN G., ZHANG J. Accumulation and distribution of cadmium in flue-cured tobacco and its impact on rhizosphere microbial community. Pol. J. Environ. Stud. 24 (4), 1563, 2015.
  • 28. WANG S.L., NAN Z.R., LIU X.W., ZHANG G.Z., ZHAO Z.J. Availability and speciation of Cu, Zn, and Pb added to irrigated desert soil. Pol. J. Environ. Stud. 19 (4), 865, 2010.
  • 29. ROBERTS T., ROSS W., NORMAN R., SLATON N., WILSON C. Predicting nitrogen fertilizer needs for rice in Arkansas using alkaline-hydrolysable-nitrogen. Soil. Sci. Soc. Am. J. 75, 1161, 2011.
  • 30. SSSC. Soil Science Society of China. Soil agricultural chemical analysis method. China agr. Sci. and technol. 1999 [In Chinese].
  • 31. CAMBARDELLA C.A., ELLIOTT E.T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Sci. Soc. Am. J. 57, 1071, 1993.
  • 32. GELAW A.M., SINGH B.R., LAL R. Organic carbon and nitrogen associated with soil aggregates and particle sizes under different land uses in tigray, northern Ethiopia. Land Degrad Dev, 26 (7), 690, 2015.
  • 33. TISDALL J.M., OADES J.M. Organic matter and waterstable aggregates in soils. Journal of Soil Science 33, 141, 1982.
  • 34. LIU L.P., LONG X.H., SHAO H.B., LIU Z.P., TAO Y. Ameliorants improve saline-alkaline soils on a large scale in northern Jiangsu Province, China Ecol. Eng. 81, 328, 2015.
  • 35. ZHANG F., XIONG H.G., AN F.Z. Classification of soil alkalization based on halophyte coverage. Acta Pedologica Sinica. 49 (4), 665, 2012.
  • 36. HE B., CAI Y., RAN W., JIANG H. Spatial and seasonal variations of soil salinity following vegetation restoration in coastal saline land in eastern China. Catena. 118, 147, 2014.
  • 37. YU J.B., LI Y.Z., HAN G.X. The spatial distribution characteristics of soil salinity in coastal zone of the Yellow River Delta. Environ. Earth Sci. 72 (2), 589, 2014.
  • 38. LENTZ R.D., SOJIKA R.E. Field results using polyacrylamide to furrow erosion and infiltration. Soil Sci. 158, 247, 1994.
  • 39. LI B., WANG Z.C., WU H. Variations of alkalization parameters of soda solonetzduring dry and wet season. Soils. 42 (4), 639-643, 2010 [In Chinese].

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.