PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Evaluation of hydrogen and methane production from co-digestion of chicken manure and food waste

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, the rapid expansions of agricultural waste, including chicken manure and food waste, has increased the amount of organic waste produced. Therefore, the main objective of this study is to evaluate the possibility of using the co-digestion of food waste and chicken manure for the production of biogas, hydrogen and methane. An anaerobic co-digestion of chicken manure (CM) and food waste (FW) was carried out using a 150 mL serum vial at different ratios: 0:1,1:9, 2:8, 3:7, 4:6, 5:5 and 1:0 of CM to FW, and incubated at 35ºC. The highest hydrogen and methane yields were 239.2 and 60.8 mL/gVS, respectively, for the experiment conducted at a selected ratio of 3:7 of CM:FW by using a 500 mL reactor. Tagged 16S rRNA gene pyrosequencing analysis for selected ratio 3:7 of CM:FW showed that the seed culture was comprised largely of uncultured bacteria from phyla Proteobacteria, Bacteroidetes and Firmicutes. During mesophilic hydrogen fermentation, phylum of Firmicutes (40%) was dominant at day 1, while phylum of Firmicutes (15%) dominated at day 13. Clostridium sp. Was the main species detected in the acidogenic phase, while Methanosaeta consilii and Methanosaeta hungatei were detected during the methanogenic phase.
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
28
Numer
4
Opis fizyczny
p.3003-3014,fig.,ref.
Twórcy
autor
  • Department of Bioprocess, Faculty of Biotechnology and Sains Biomolekul, Faculty of Biotechnology and Sains Biomolekul, Universiti Putra, Putra, Malaysia
  • Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP) Sungai Chuchuh, Padang Besar, Malaysia
  • Department of Bioprocess, Faculty of Biotechnology and Sains Biomolekul, Faculty of Biotechnology and Sains Biomolekul, Universiti Putra, Putra, Malaysia
  • Bioprocessing and Biomanufacturing Research Centre Faculty of Biotechnology and Sains Biomolekul, Universiti Putra Malaysia, Selangor, Malaysia
autor
  • Department of Bioprocess, Faculty of Biotechnology and Sains Biomolekul, Faculty of Biotechnology and Sains Biomolekul, Universiti Putra, Putra, Malaysia
  • Bioprocessing and Biomanufacturing Research Centre Faculty of Biotechnology and Sains Biomolekul, Universiti Putra Malaysia, Selangor, Malaysia
autor
  • Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Malaysia
Bibliografia
  • 1. CAKIR A., OZMIHCI S., KARGI F. Comparison of bio-hydrogen production from hydrolyzed wheat starch by mesophilic and thermophilic dark fermentation. International Journal Hydrogen Energy, 35, 13214, 2010.
  • 2. XING Y., LI Z., FAN Y., HOU, H. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Environmental Science Pollution Research 17, 392, 2010.
  • 3. YASIN H.M.N., NOR’ AINI A.R., HASFALINA C.M., YUSOFF M.Z.M., HASSAN M.A. Microbial characterization of hydrogen-producing bacteria in fermented food waste at different pH values. International Journal Hydrogen Energy 36, 95710, 2011.
  • 4. NORIMAH A.K., SAFIAH M., JAMAL K., SITI H., ZUHAIDA H., ROHIDA S., FATIMAH S., SITI N., POH B.K., KANDIAH M., ZALILAH M.S., WAN MANAN W.M., FATIMAH S., AZMI M.Y. Food Consumption Patterns: Findings from the Malaysian Adult Nutrition Survey (MANS). Malaysian Journal of Nutrition 14 (1), 25, 2008.
  • 5. JAYARAMAN K., UNIRA H., DABABRATA C. and IRANMANESH M. The preference and consumption of chicken lovers with race as a moderator – An empirical study in Malaysia. International Food Research Journal 20 (1), 165, 2013.
  • 6. AVCIOĞLU A.O., TÜRKER U. Status and potential of biogas energy from animal wastes in Turkey. Renew Sustain Energy Rev 16, 1557, 2012.
  • 7. ARGUN H., KARGI F. Effects of sludge pre-treatment method on biohydrogen production by dark fermentation of waste ground wheat. International Journal Hydrogen Energy.34, 8543, 2009.
  • 8. JO J.H., JEON C.O., LEE D.S., PARK J.M. Process stability and microbial community structure in anaerobic hydrogen-producing microflora from food waste containing kimchi. Journal of Biotechnology 131, 300, 2007.
  • 9. MARIAKAKIS I., BISCHOFF P., KRAMPE J., MEYER C., STEINMETZ H. Effect of organic loading rate and solids retention time on microbial population during biohydrogen production by dark fermentation in large labscale. International Journal Hydrogen Energy 36, 10690, 2011.
  • 10. TOMAZETTO G., OLIVEIRA V.M. Investigation of the FeFe-hydrogenase gene diversity combined with phylogenetic microbial community analysis of an anaerobic domestic sewage sludge. World Journal Microbiology Biotechnology 29, 2003, 2013.
  • 11. IM W.T., KIN D.H., KIM K.H., KIM M.S. Bacterial community analyses by pyrosequencing in dark fermentative H2-producing reactor using organic wastes as a feedstock. International Journal Hydrogen Energy 37, 8330, 2012.
  • 12. LU L., XING D., REN N. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge. Water Resources 46, 2425, 2012.
  • 13. DOWD S., CALLAWAY T., WOLCOTT R., SUN Y., MCKEEHAN T., HAGEVOORT R., EDRINGTON T. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEPAP). BMC Microbiol. 8, 125, 2008.
  • 14. APHA. Standard Method for the Examination of Water and Wastewaster. 21st ed.Physical and Aggregate Properties. USA: American Public Health Association, 55, 2005
  • 15. ISMAIL I., HASSAN M.A., NOR’ AINI A.R., SOON C.S. Thermophilic biohydrogen production from palm oil effluent (POME) using suspended mixed culture. Biomass Bioenergy 34, 42, 2010.
  • 16. PALACIO-BARCO E., ROBERT-PEILLARD F., BOUDENNEJ L., COULOMB B. On-line analysis of volatile fatty acids in anaerobic treatment processes .Anal Chim Acta 668, 74, 2010.
  • 17. ZHANG C., XIAO G., PENG L., SU H., TAN T. The anaerobic co-digestion of food waste and cattle manure. Bioresources Technology 129, 170, 2013.
  • 18. MU Y., WANG G., YU H.Q. Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. Enzyme Microb. Technology 38, 905, 2006.
  • 19. HONG-WIE Y., DAVI, E.B. Anaerobic co-digestion of algal sludge and waste paper to produce methane, Bioresource Technology 98 (1), 130, January 2007.
  • 20. KOSTER I., LETTINGA G. Anaerobic digestion at extreme ammonia concentrations, Biol. Wastes 25 (1), 51, 1988.
  • 21. CHEN H.H., LIU S.T., YANG F.L., XUE Y., WANG T. The development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a single reactor for nitrogen removal. Bioresour. Technol., 100 (4) 1548, 2009.
  • 22. SERRANO A., SILES J.A., CHICA A.F., MARTIN A. Improvement of mesophilic anaerobic co-digestion of agrifood waste by addition of glycerol. J. Environ. Manag. 140, 76, 2014.
  • 23. ZHIYANG X., MINGXING Z., HENGFENG M., ZHENXING H., SHUMEI G., WENQUAN R. In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion. Bioresource Technology 163, 186, 2014.
  • 24. CHANANCHIDA N., UBONRAT S., NIPON P. Production of hydrogen and methane by one and twostage fermentation of food waste. International journal of hydrogen energy 38, 15764, 2013.
  • 25. CHU F.C., XU K.Q., LI Y.Y. Inamori Y. Hydrogen and methane potential based on the nature of food waste materials in a two-stage thermophilic fermentation process. International Journal of Hydrogen Energy 37, 10611, 2012.
  • 26. KIM S.H., HAN S.K., SHIN H.S., KIM. Optimization of continuous hydrogen fermentation of food waste as a function of solids retention time independent of hydraulic retention time. Process Biochemistry 43, 213, 2008.
  • 27. XINYUAN L., RUYING L., MIN J., LI H. Hydrogen and methane production by co-digestion of waste activated sludge and food waste in the two-stage fermentation process: Substrate conversion and energy yield. Bioresource Technology 146, 317, 2013.
  • 28. KIM D.H., KIM S.H., KIM K.Y. Experience of a pilotscale hydrogenproducing anaerobic sequencing batch reactor (ASBR) treating food waste. International Journal Hydrogen Energy 35, 1590, 2010.
  • 29. CYSNEIROS D., BANKS C.J., HEAVEN S., KARATZAS K.A. The effect of pH control and ‘hydraulic flush’ on hydrolysis and Volatile Fatty Acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate. Bioresources Technology. 123, 263, 2012.
  • 30. ASTALS S., ARISO M., GALí A., MATA-ALVAREZ J. Co-digestion of pig manure and glycerine: experimental and modelling study. Journal of Environment Biology, 1091, 2011.
  • 31. BOUALLAGUI H., TOUHAMI Y., BEN CHEIKH R., HAMDI M. Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem. 40, 989, 2005.
  • 32. MISI S.N., FORSTER C.F. Batch co-digestion of multicomponent agro-wastes. Bioresources Technology 80, 19,2001.
  • 33. WANG Y.Y., ZHANG Y.L., WANG,J.B. Effect of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass Bioenergy 33, 848, 2009.
  • 34. KHANAL S.K., CHEN W.H., LI L., SUNG S. Biologicalhydrogen production: effect of pH and intermediate products. International Journal Hydrogen Energy 29, 1123, 2004.
  • 35. KIM M.S., LEE D.Y., KIM D.H. Continuous hydrogen production from tofu processing waste using anaerobic mixed microflora under thermophilic conditions. International Journal Hydrogen Energy 36, 8712, 2011.
  • 36. YUNQIN L., SHUBIN W., DEHAN W. Hydrogenmethane production from pulp & paper sludge and food waste by mesophilic-thermophilic anaerobic co-digestion. International Journal of Hydrogen Energy 38 (35), 15055, 2013.
  • 37. RUYING LI., XINYUAN L., MIN J., LI H. Hydrogen and methane production by co-digestion of waste activatedsludge and food waste in the two-stage fermentation process: Substrate conversion and energy yield. Bioresource Technology 146, 317, 2013.
  • 38. CHAKKRIT S., PENSRI P., TSUYOSHI I., ALISSARA R. Co-digestion of food waste and sludge for hydrogen production by anaerobic mixed cultures: Statistical key factors optimization. International Journal of Hydrogen Energy, 36, 14227, 2011.
  • 39. NA D., HAILIN T., CONG L., XUE L., MINGZHU Z. Anaerobic co-digestion of kitchen waste and pig manure with different mixing ratios. Journal of Bioscience and Bioengineering 120 (1), 51, 2015.
  • 40. XU Z., ZIHAN Y., YULIN D., TIANWEI T. Anaerobic co-digestion of food waste and straw for biogas production. Renewable Energy 78, 527, 2015.
  • 41. THANAPORN L., KANCHANASUT A., WUTTICHAI M., CHANTARAPORN P., NIPON P., VERAWAT C. Analysis of microbial community adaptation in mesophilic hydrogen fermentation from food waste by tagged 16S rRNA gene pyrosequencing. Journal of Environmental Management 144, 143, 2015.
  • 42. KIM D.H., KIM S.H., SHIN H.S. Hydrogen fermentation of food waste without inoculum addition. Enzym. Microb. Technol. 45, 181, 2009.
  • 43. LEE M.J., SONG J.H., HWANG S.J. Effects of acid pretreatment on bio-hydrogen production and microbial communities during dark fermentation. Bioresour. Technology 100, 1491, 2009.
  • 44. LAY J.J., FAN K.S., CHANG J.I., KU C.H. Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. International Journal Hydrogen Energy 28, 1361, 2003.
  • 45. HEYNDRICKX M., DE VOS P., DE LEY J. Fermentation characteristics of Clostridium pasteurianum LMG3285 grown on glucose and mannitol. J Appl Bacteriol 70 (1), 52, 1991.
  • 46. YOKOI H., TOKUSHIGE T., HIROSE J., HAYASHI S., TAKASAKI Y. H2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnol Lett 20 (2), 143, 1998.
  • 47. CHIN H.L., CHEN Z.S., CHOU C.P. Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production. Biotechnol Prog 19 (2), 383, 2003.
  • 48. NANDI R., SENGUPTA S. Microbial production of hydrogen: an overview. Crit Rev Microbiol 24 (1), 61, 1998.
  • 49. SHIN H.S., YOUN J.H., KIM S.H. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. International Journal Hydrogen Energy 29, 1355, 2004.
  • 50. RAFRAFI Y., TRABLY E., HAMELIN J., LATRILLE E., MEYNIAL-SALLES I., BENOMAR S., GIUDICIORTICONI M.T., STEYER J.P. Sub-dominant bacteria as keystone species in microbial communities producing bio-hydrogen. International Journal Hydrogen Energy 38, 4975, 2013.
  • 51. PENNING H., CONRAD R. Carbon isotope effects associated with mixed-acid fermentation of saccharides by Clostridium papyrosolvens. Geochimica 70, 2283, 2006.
  • 52. CHUN-FENG C., YOSHITAKA E., KAI-QIN X., YU-YOU L., YUHEI I. Characterization of microbial community in the two-stage process for hydrogen and methane production from food waste. International journal of hydrogen energy 35, 8253, 2010.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-6e618f22-6f39-4fcd-a557-c65d33d08528
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.