PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 4 |

Tytuł artykułu

Effect of land use on the carbon and nitrogen forms in humic horizons of Stagnic Luvisols

Autorzy

Treść / Zawartość

Warianty tytułu

PL
Wpływ sposobu użytkowania na formy węgla i azotu w poziomie próchnicznym gleb płowych stagnoglejowych

Języki publikacji

EN

Abstrakty

EN
The aim of the study was to assess the effect of land use on the forms of carbon and nitrogen in humic horizons of Stagnic Luvisols located in the area of Sławieńska Plain (northern Poland). Soil samples were collected form six stands with different land uses located in the same soil complex: more than 100-year-old beech-oak forest (BOF), meadow (M), arable field (AF), fallow (F), secondary afforestation with 15- year-old birch trees (SAB) and secondary afforestation with 30-year-old alder trees (SAA). In every stand, soils were sampled in five replications and analyzed with standard methods used in soil science. The content of different forms of carbon and nitrogen was analyzed after sequential extraction in 0.25 mol KCl dm-3, 0.25 mol H2SO4 dm-3 and 2.5 mol H2SO4 dm-3 (Becher, Kalembasa 2011). Different land uses were reflected in the properties of humic horizon of the investigated soils. Particularly large differences were observed between the forest soils never used for agriculture, and arable or post-arable soils. Tillage caused the increase of the A horizon depth from 9.2 to 26.4-35.6 cm, and the increase of its volumetric density. The highest content of soil organic matter (SOM), total organic carbon (TOC) and total nitrogen (TN) as well as the highest TOC:TN ratio were observed in BOF stand. Statistically significant differences were observed between the stands in the content of carbon forms. Nonhydrolyzable carbon was dominat in the soils (55.98-68.11% of TOC), and dissolved organic carbon (DOC) had the smallest contribution (1.43-3.70% in TOC). In general, higher contribution of DOC in TOC was observed in arable and post-arable soils than in soils under forest. The content of mineral nitrogen (NO3-N + NH4-N) in the studied soils ranged from 0.028 to 0.053 g kg-1, and NH4-N dominated in the pool. The lowest concentration of mineral nitrogen was observed in arable soils, and significantly higher in the soils under forest and fallow. Easily hydrolyzable nitrogen (EHN), weakly hydrolyzable nitrogen (WHN) and nonhydrolyzable nitrogen (NHN) were the main forms of the element in the studied soils and their content was closely related to the content of SOM. The highest concentration of the forms was noticed in BOF stand. There were differences between the stands in DOC:DON, EHC:EHN, WHC:WHN and NHC:NHN ratios, which indicate varied biological activity of the soils under different uses.
PL
Celem pracy była ocena wpływu sposobu użytkowania na zawartość i udział form węgla i azotu w poziomie próchnicznym gleb płowych stagnoglejowych położonych na obszarze Równiny Sławieńskiej (północna Polska). Próbki gleb pobrano z 6 stanowisk użytkowanych w różny sposób, położonych w obrębie tego samego kompleksu gleb. Stanowiska obejmowały: ponad 100-letni las bukowo-dębowy (BOF), łąkę (M), pole uprawne (AF), ugór (F), oraz 15-letnie zalesienie brzozą (SAB) i 30-letnie zalesienie olchą (SAA) na gruntach porolnych. Próbki gleb na każdym stanowisku pobrano w 5 powtórzeniach. Oznaczono w nich właściwości fizyczne i chemiczne, stosując metody powszechnie stosowane w gleboznawstwie, oraz zawartość form węgla i azotu w roztworach po sekwencyjnej ekstrakcji z zastosowaniem 0,25 mol KCl dm-3, 0,25 mol H2SO4 dm-3 i 2,5 mol H2SO4 dm-3 (Becher, Kalembasa 2011). Stwierdzono istotny wpływ sposobu użytkowania gleb na właściwości poziomu próchnicznego badanych gleb. Szczególnie duże różnice notowano między nigdy nie użytkowanymi rolniczo glebami leśnymi a glebami rolnymi i porolnymi. Użytkowanie rolnicze gleb spowodowało wzrost miąższości poziomu A z ok. 9,2 cm do 26,4-35,6 cm oraz zwiększenie gęstości objętościowej w tym poziomie. W glebach leśnych obserwowano największą zawartość materii organicznej (SOM), węgla organicznego (TOC) i azotu ogółem (TN), a także najszerszy stosunek TOC: TN. Stwierdzono istotne statystycznie różnice między glebami na badanych stanowiskach pod względem zawartości różnych form węgla. Dominującą frakcją był węgiel nie ulegający hydrolizie (55,98-68,11% TOC), najmniejszy zaś udział miał rozpuszczalny węgiel organiczny (DOC) – 1.43-3.70% TOC. Na ogół większy udział DOC w TOC notowano w glebach rolnych i porolnych w porównaniu z glebami leśnymi. Zawartość azotu mineralnego (NO3-N + NH4-N) wynosiła 0,028-0,053 g kg-1. W tej puli dominowała forma amonowa. Najniższe stężenie azotu mineralnego odnotowano w glebach ornych i istotnie wyższe w glebach leśnych oraz ugorowanych. W badanych glebach dominowały formy azotu łatwo hydrolizująca (EHN), trudno hydrolizująca (WHN) i niehydrolizująca (NHN), występując w zbliżonych proporcjach. Ich zawartość była pozytywnie skorelowana z zawartością materii organicznej, więc największe stężenie tych form występowało w glebach na stanowisku BOF. Stwierdzono różnice między stanowiskami pod względem stosunków DOC:DON, EHC:EHN, WHC:WHN i NHC:NHN, co świadczy o zróżnicowanej aktywności biologicznej gleb użytkowanych w różny sposób.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

4

Opis fizyczny

p.1037-1048,ref.

Twórcy

autor
  • Institute of Geography and Regional Studies, Pomeranian University in Slupsk, Partyzantow 27, 76-200 Slupsk, Poland

Bibliografia

  • Akselsson C., Berg B., Meentemeyer V., Westling O. 2005. Carbon sequestration rates in organic layers of boreal and temperate forest soils - Sweden as a case study. Global Ecol. Biogeogr., 14: 77-84.
  • Anderson S., Nilsson S.I., Saetre P. 2002. Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH. Soil Biol.Biochem., 32: 1-10.
  • Becher M., Kalembasa D. 2011. Fractions of nitrogen and carbon in humus horizons of arable Luvisols and Cambisols located on Siedlce upland. Acta Agroph., 18(1): 7-16. (in Polish)
  • Bejger R., Gołębiowska D. 2005. Comparison of physico-chemical and humic acids optical parameters of four peat species. Humic Substances Ecosystems, 6: 13-16.
  • Chertov O.G., Komarov A.S. 1997. SOMM: A model of soil organic matter dynamics. Ecol. Model., 94: 177-189.
  • Cheshire M.V., Russell J.D., Fraser A.R., Bracewell J.M., Robertson G.W., Benzing-Purdie L.M., Ratcliffe C.I., Ripmeester J.A., Goodman B.A. 1992. Nature of soil carbohydrate and its association with soil humic substances. J. Soil Sci., 43: 359-373.
  • Christ M.J., David M.B. 1996. Temperature and moisture effects on the production of dissolved organic carbon in a spodosol. Soil Biol. Biochem., 28(9): 1191-1199.
  • Cotrufo M.F., De Santo A.V., Alfani A., Bartoli G., De Cristofaro A. 1995. Effects of urban heavy metal pollution on organic matter decomposition in Quercus ilex L. woods. Environ. Pollut., 89: 81-87.
  • Czekała J. 2010. Impact of long-term plant cultivation without participation of cereals on concentrations of nitrogen forms in soil humus horizon. J. Res. Appl. Agric. Eng., 55(3): 49-53.
  • Dawson J.J.C., Soulsby C., Tetzlaff D., Hrachowitz M., Dunn S.M., Malcolm I.A. 2008. Influence of hydrology and seasonality on DOC exports from three contrasting upland catchments. Biogeochemistry, 90: 93-113.
  • Domagała-Świątkiewicz I., Sady W. 2011. Effect of nitrogen fertilization on P, K, Mg, Ca and S content in soil and edible parts of white cabbage. J. Elem., 16(2): 177-193. DOI: 10.5601/jelem.2011.16
  • Dziadowiec H., Lutowska M. 2005. The effect of ants Formica polyctena trail system on the organic matter transformation. Humic Substances Ecosystems, 6: 41-46.
  • Dziamski A., Gonet S.S., Dębska B. 2005. Effects of organic fertilization on the parameters of thermal decomposition of humic acids. Humic Substances in Ecosystems 6: 46-51.
  • Fröberg M., Kleja D.B., Bergk vist B., Tipp ing E., Mulder J. 2005. Dissolved organic carbon leaching from a coniferous forest floor – a field manipulation experiment. Biogeochemistry, 75: 271-281.
  • Gondek K. 2007. Content of carbon, nitrogen and selected heavy metals in composts. J. Elementol., 12(1): 13-23.
  • Gonet S.S., Dębska B. 2007. Qualitative parameters of organic matter in the Ol sub-horizons of forest soils. Humic Substances Environment, 7: 129-141.
  • Gundersen P., Callesen I., de Vries W. 1998. Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environ. Pollut., 102: 403-407.
  • Haunz F.X., Maidl F.X., Fischbeck G. 1992. Effect of soil compaction on the dynamics of soil and fertilizer nitrogen under winter wheat. Zl Pflanzenernachr. Bodenkd., 155: 129-134. (in German)
  • Hersemann H. 1987. Veranderungen der Art und Menge der organischen Substanz in der Ackerkrume von Langzeit-Feldversuchen, gemessen an einigen chemischen und physikalischen Parametern. Gött Bodenkdl Ber, 92: 1-100. (in German)
  • Heyes, A., Moore, T.R. 1992. The influence of dissolved organic carbon and anaerobic conditions of mineral weathering. Soil Sci., 154: 226-236.
  • Hu S., Coleman D.C., Carroll C.R., Hendrix P.F., Beare M.H. 1997. Labile soil carbon pools in subtropical forest and agricultural ecosystems as influenced by management practices and vegetation types. Agric., Ecosyst. Environ., 65: 69-78.
  • Hue, N.V., Cradd ock, G.R., Adams, F. 1986. Effect of organic acids on aluminum toxicity in subsoils. Soil Sci. Soc. Am. J., 50: 28-34.
  • Jonczak J. 2012. The effect of pine and spruce admixture in a beech stand on the intensity of carbon, iron and aluminum leaching from humic and organic horizons of Dystric Arenosols in northern Poland. Forest Res. Papers, 73(2): 143-151. (in Polish)
  • Jonczak J., Parzych A., 2012. Impact of Scots pine admixture in European beech stand on dissolved organic carbon and nitrogen leaching from organic and humic horizons of Dystric Arenosols in northern Poland. J. Forest Sci., 58(6): 278-286.
  • Kalembasa D., Becher M. 2009. Fractions of nitrogen in drained peat-muck soils located in the upper Liwiec River valley. Water-Environment-Rural Areas, 9(2): 73-82. (in Polish)
  • Kalembasa D., Becher M. 2012. Speciation of carbon and selected metals in spent mushroom substrates, J. Elem., 17(3): 409-419. DOI: 10561/jelem.2012.17.3
  • Klimowicz Z., Uziak S., 2001. The influence of long-term cultivation on soil properties and patterns in an undulating terrain in Poland. Catena, 43: 177-189.
  • Kužel S., Kolář L., Ledvina R., Spalevič V. 2001. Transformation of organic matter in mountain and submountain regions of Šumava in comparison with České Budějovice Basin. Humic Substances Ecosystems, 4: 79-85.
  • Kwiatkowska J., Maciejewska A. 2003. Fractional composition of humic acids and some physico- chemical properties of soil as a result of addition a brown coal fertilizer. Humic SubstancesEnvironment, 5: 57-77.
  • Łabaz B., Glina B., Bogacz A. 2011. Properties of humus substances in differently used soils of the Milicz-Głogów depression. Pol. J. Soil Sci., 44(2): 177-192.
  • Laik R., Kumar K., Das D.K., Chaturvedi O.P. 2009. Labile soil organic matter pools in a calciorthent after 18 years of afforestation by different plantations. Appl. Soil Ecol., 42: 71-78.
  • Lipiec J., Stępniewski W. 1995. Effects of soil compaction and tillage systems on uptake and losses of nutrients. Soil Tillage Res., 35: 37-52.
  • Mander U., Kull A., Kuusemets V., Tamm T. 2000. Nutrient runoff dynamics in a rural catchment: Influence of land-use changes, climatic fluctuations and ecotechnological measures. Ecol. Eng., 14: 405-417.
  • Murphy D.V., Macdonald A.J., Stokd ale E.A., Goulding K.W.T., Fortune S., Gaunt J.L., Poluton P.R., Wakefield J.A., Webster C.P., Wilmer W.S. 2000. Soluble organic nitrogen in agricultural soils. Biol. Fertil. Soils, 30: 374-387.
  • Nieder R., Richter J. 2000. C and N accumulation in arable soils of West Germany and its influence on the environment – Developments 1970 to 1998. J. Plant Nutr. Soil Sci., 163: 65-72.
  • Pulleman M.M., Bouma J., van Essen E.A., Meijles E.W. 2000. Soil organic matter content as a function of different land use history. Soil Sci. Soc. Am. J., 64: 689–693.
  • Qualls, R.G., Haines, B.L. 1991. Geochemistry of dissolved organic nutrients in water percolating through a forest ecosystem. Soil Sci. Soc. Am. J., 55: 1112-1123.
  • Remeš M., Kulhavý J. 2009. Dissolved organic carbon concentrations under conditions of different forest composition. J. Forest Sci., 55(5): 201-207.
  • Schmitt A., Glaser B. 2011. Organic matter dynamics in a temperate forest as influenced by soil frost. J. Plant Nutrit. Soil Sci., 174: 754-764.
  • Sharpley A.N., Smith S.J. 1995. Nitrogen and phosphorus in soils receiving manure. Soil Sci., 159: 253-258.
  • Shipitalo M.J., Edwards W.M. 1993. Seasonal patterns of water and chemical movement in tilled and no-till column lysimeters. Soil. Sci. Soc. Am. J., 57: 218-223.
  • Sienkiewicz S., Wojnowska T., Krzebietke S., Wierzbowska T., Żarczyński P. 2009. Content of available forms of some micronutrients in soil after long-term differentiated fertilization. J. Elem., 14(4): 787-794. DOI: 10.5601/jelem.2009.14.4
  • Simansky V. 2007. Influence of different tillage systems on quantity and quality of soil organic matter in Haplic Luvisols under sugar beet farming system. Humic Substances Ecosystems, 7: 57-61.
  • Smolander A., Kitunen V. 2002. Soil microbal activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biol. Biochem., 34: 651-660.
  • Sulce S., Palma-Lopez D., Jaquin F., Vong P.C., Guiraud G. 1996. Study of immobilization and remobilization of nitrogen fertilizer in cultivated soils by hydrolytic fractionation. Eur. J. Soil Sci., 47: 249-255.
  • Szombathova N., Chlpik J., Simansky V. 2005. Soil organic matter as an indicator of soil genesis. Humic Substances Ecosystems, 6: 176-181.
  • Tobiasova E., Krajcovicova D., Cervenka J., Szombathova N. 2005. Quality and quantity of soil organic matter under different tree species in forest and town. Humic Substances Ecosystems, 6: 190-193.
  • Vesterdal L., Schmidt I.K., Callesen I., Nilsson L.O., Gundersen P. 2008. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecol. Manage., 255: 35-48.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6db9f533-8b65-412b-a11d-8738524fb218
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.