Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 17 | 1 |
Tytuł artykułu

Methods and difficulties in detection of Clostridium botulinum and its toxins

Treść / Zawartość
Warianty tytułu
Języki publikacji
The aim of this work was to present selected data regarding traditional and modern methods for C. botulinum and its toxins detection. In this article, methods based on culturing techniques, mouse bioassay, immunological techniques, chromatography and PCR, PFGE, RFLP, AFLP are described. The mentioned techniques were evaluated considering their usefulness in the samples examination, genotyping of strains and the diagnostics of botulism.
Słowa kluczowe
Opis fizyczny
  • Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute in Pulawy, Partyzantow 57, 24-100 Puławy, Poland
  • Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute in Pulawy, Partyzantow 57, 24-100 Puławy, Poland
  • Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute in Pulawy, Partyzantow 57, 24-100 Puławy, Poland
  • Akbulut D, Grant KA, McLauchlin J (2005) Improvement in laboratory diagnosis of wound botulism and tetanus among injecting illicit-drug users by use of real-time PCR assays for neurotoxin gene fragments. J Clin Microbiol 43: 4342-4348.
  • Alam SI, Kumar B, Kamboj DV (2012) Multiplex detection of protein toxins using MALDI - TOF - TOF tandem mass spectrometry: application in unambiguous toxin detection from bioaerosol. Anal Chem 84: 10500-10507.
  • Al-Soud WA, Rådström P (2001) Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 39: 485-493.
  • Anniballi F, Auricchio B, Delibato E, Antonacci M, Medici D, Fenicia L (2012) Multiplex real - time PCR SYBR Green for detection and typing of group III Clostridium botulinum. Vet Microbiol 154: 332-338.
  • Anon (1998) Botulism in the United States 1899-1996. Handbook for epidemiologists, clinicians, and laboratory workers, 1st ed., Centers for Disease Control and Prevention, Atlanta.
  • Anon (2008) Polymerase Chain Reaction (PCR) for the detection of botulinum neurotoxin-producing Clostridia. Proceedings, In: Food analysis-Horizontal methods-Microbial contamination: CEN/TC 275/WG 6 DOC N368, Helsinki-Finland, pp 1-17.
  • Aranda E, Rodriguez MM, Asensio MA, Cordoba JJ (1997) Detection of Clostridium botulinum types A, B, E and F in foods by PCR and DNA probe. Lett Appl Microbiol 25: 186-190.
  • Ashton AC, Crowther JS, Dolly JO (1985) A sensitive and useful radioimmunoassay for neurotoxin and its haemagglutinin complex from Clostridium botulinum. Toxicon 23: 235-246.
  • Aureli P, Fenicia L, Pasolini B, Gianfranceschi M, McCroskey LM, Hatheway CL (1986) Two cases of type E botulism caused by neurotoxinogenic Clostridium butyricum in Italy. J Infect Dis 154: 207 - 211.
  • Bagramyan K, Barash JR, Arnon SS, Kalkum M (2008) Attomolar detection of botulinum toxin type A in complex biological matrices. PloS One. doi: 10.1371/journal. pone.0002041.
  • Barr JR, Moura H, Boyer AE, Woolfitt AR, Kalb SR, Pavlopoulos A, McWilliams LG, Schmidt JG, Martinez RA, Ashley DL (2005) Botulinum neurotoxin detection and differentiation by mass spectrometry. Emerg Infect Dis 11: 1578-1583.
  • Basavanna U, Muruvanda T, Brown EW, Sharma SK (2013) Development of a cell - based functional assay for the detection of Clostridium botulinum neurotoxin types A and E. Int J of Microbiol. doi:10.1155/2013/593219.
  • Bok S, Korampally V, Darr CM, Folk WR, Polo - Parada L, Gangopadhyay K, Gangopadhyay S (2013) Femtogram - level detection of Clostridium botulinum neurotoxin type A by sandwich immunoassay using nanoporous substrate and ultra - bright fluorescent suprananoparticles. Biosens Bioelectron 41: 409 - 416.
  • Boroff DA, Shu-Chen G (1973) Radioimmunoassay for type A toxin of Clostridium botulinum. Appl Microbiol 25: 545-549.
  • Boyer AE, Gallegos-Candela M, Lins RC, Kuklenyik Z, Woolfitt A, Moura H, Kalb S, Quinn CP, Barr JR (2011) Quantitative mass spectrometry for bacterial protein toxins-a sensitive, specific, high-throughput tool for detection and diagnosis. Molecules 16: 2391-2413.
  • Boyer AE, Moura H, Woolfitt AR, Kalb SR, McWilliams LG, Pavlopoulos A, Schmidt JG, Ashley DL, Barr JR (2005) From the mouse to the mass spectrometer: detection and differentiation of the endoproteinase activities of botulinum neurotoxins A-G by mass spectrometry. Anal Chem 77: 3916-3924.
  • Braconnier A, Broussolle V, Perelle S, Fach P, Nguyen-The C, Carlin F (2001) Screening for Clostridium botulinum type A, B, and E in cooked chilled foods containing vegetables and raw material using polymerase chain reaction and molecular probes. J Food Prot 64: 201-207.
  • Čapek P, Dickerson TJ (2010) Sensing the deadliest toxin: technologies for botulinum neurotoxin detection. Toxins (Basel) 2: 24-53.
  • Cato EP, George WL, Finegold SM (1986) Genus Clostridium. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (ed) Bergey’s Manual of Systematic Bacteriology, 2nd ed., Wiliams and Wilkins, Baltimore, pp 1141-1200.
  • Chiao DJ, Wey JJ, Shyu RH, Tang SS (2008) Monoclonal antibody-based lateral flow assay for detection of botulinum neurotoxin type A. Hybridoma (Larchmt). 27: 31-35.
  • Ching KH, Lin A, McGarvey JA, Stanker LH, Hnasko R (2012) Rapid and selective detection of botulinum neurotoxin serotype-A and -B with a single immunochromatographic test strip. J Immunol Methods 380: 23-29.
  • Ciccarelli AS, Gimenez DF (1972) Another type of Clostridium botulinum. Zentralbl Bakteriol Orig 215: 221 - 224.
  • Cunniff P (1995) Official Methods of Analysis of AOAC International, 16th ed., AOAC Intern Inc, Washington, pp 46-48.
  • Dezfulian M, Bartlett JG (1984) Detection of Clostridium botulinum type A toxin by enzyme-linked immunosorbent assay with antibodies produced in immunologically tolerant animals. J Clin Microbiol 19: 645-648.
  • Dezfulian M, McCroskey LM, Hatheway CL, Dowell VR, Jr (1981) Selective medium for isolation of Clostridium botulinum from human faeces. J Clin Microbiol 13: 526-531.
  • Dingwall A, Shapiro L, Ely B (1990) Analysis of bacterial genome organization and replication using pulsed-field gel electrophoresis. Methods 1: 160-168.
  • Ekong T (2000) Immunological detection of botulinum neurotoxins. Anaerobe 6: 125-127.
  • Ekong TA, Feavers IM, Sesardic D (1997) Recombinant SNAP-25 is an effective substrate for Clostridium botulinum type A toxin endopeptidase activity in vitro. Microbiology 143: 3337-3347.
  • Erbguth FJ (2008) From poison to remendy: the chequered history of botulinum toxin. J Neural Transm 115: 559-565.
  • Eubanks LM, Hixon MS, Jin W, Hong S, Clancy CM, Tepp WH, Baldwin MR, Malizio CJ, Goodnough MC, Barbieri JT, Johnson EA, Boger DL, Dickerson TJ, Janda KD (2007) An in vitro and in vivo disconnect uncovered through high - throughput identification of botulinum neurotoxin A antagonists. Proc Natl Acad Sci USA 104: 2602-2607.
  • Fach P, Gibert M, Griffais R, Guillou JP, Popoff MR (1995) PCR and gene probe identification of botulinum neurotoxin A-, B-, E-, F-, and G-producing Clostridium spp. and evaluation in food samples. Appl Environ Microbiol 61: 389-392.
  • Ferreira JL, Hamdy MK, Zapatka FA, Hebert WO (1981) Immunodiffusion method for detection of type A Clostridium botulinum. Appl Environ Microbiol 42: 1057-1061.
  • Fillo S, Giordani F, Anniballi F, Gorge O, Ramisse V, Vergnaud G, Riehm JM, Scholz HC, Splettstoesser WD, Kieboom J, Olsen JS, Fenicia L, Lista F (2011) Clostridium botulinum group I strain genotyping by 15 - locus multilocus variable - number tandem - repeat analysis. J Clin Microbiol 49: 4252-4263.
  • Fletcher GC, Youssef JF, Lu G (2008) Selecting methods for determining the presence of BoNT genes in New Zealand marine sediments. Crop and Food Research Confidential Report, 1st ed., New Zealand Institute for Crop and Food Research Limited, New Zealand.
  • Garber EA, Venkateswaran KV, O’Brien TW (2010) Simultaneus multiplex detection and confirmation of the proteinaceous toxins abrin, ricin, botulinum toxins, and Staphyloccocus enterotoxins A, B, and C in food. J Agric Food Chem 58: 6600-6607.
  • Glasby C, Hatheway CL (1985) Isolation and enumeration of Clostridium botulinum by direct inoculation of infant fecal specimens on egg yolk agar and Clostridium botulinum isolation media. J Clin Microbiol 21: 264-266.
  • Grenda T, Kwiatek K (2009) Application of molecular-biology methods to the diagnosis of botulism in mallard ducks. Bull Vet Inst Pulawy 53: 365-368.
  • Grenda T, Kwiatek K (2010) In house validation of real-time PCR method for detection of Clostridium botulinum in food and feed matrixes. Bull Vet Inst Pulawy 54: 557-562.
  • Grimont F, Grimont PA (1986) Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. Ann Inst Pasteur Microbiol 137B: 165-175.
  • Guglielmo-Viret V, Attree O, Blanco-Gros V, Thullier P (2005) Comparison of electrochemiluminescence assay and ELISA for the detection of Clostridium botulinum type B neurotoxin. J Immunol Methods 301: 164-172.
  • Hall JD, McCroskey LM, Pincomb BJ, Hatheway CL (1985) Isolation of an organism resembling Clostridium barati which produces type F botulinal toxin from an infant with botulism. J Clin Microbiol 21: 654-655.
  • Hallis B, James BA, Shone CC (1996) Development of novel assays for botulinum type A and B neurotoxins based on their endopeptidase activities. J Clin Microbiol 34: 1934-1938.
  • Hatheway CL (1990) Toxigenic clostridia. Clin Microbiol Rev 3: 66-98.
  • Hatheway CL (1995) Botulism: The present status of the disease. Curr Top Microbiol Immunol 195: 55-75.
  • Hill BJ, Skerry JC, Smith TJ, Arnon SS, Douek DC (2010) Universal and specific quantitative detection of botulinum neurotoxin genes. BMC Microbiol 10: 267.
  • Hyytia E, Björkroth J, Hielm S, Korkeala H (1999) Characterisation of Clostridium botulinum groups I and II by randomly amplified polymorphic DNA analysis and repetitive element sequence-based PCR. Int J Food Microbiol 48: 179-189.
  • Hyytiä-Trees E (1999) Prevalence, molecular epidemiology and growth of Clostridium botulinum type E in fish and fishery products. Doctoral Thesis. University of Helsinki, Helsinki.
  • Ito KA, Seslar DJ, Mercer WA, Meyer KF (1967) The thermal and chlorine resistance of Clostridium botulinum types A, B, and E spores. In: Ingram M, Roberts TA (eds) Botulism. Chapman and Hall, United Kingdom, pp 108-122.
  • Johnson EA, Tepp WH, Bradshaw M, Gilbert RJ, Cook PE, McIntosh EDG (2005) Characterization of Clostridium botulinum strains associated with an infant botulism case in the United Kingdom. J Clin Microbiol 43: 2602 -2607.
  • Kakinuma H, Maruyama H, Yamakawa K, Nakamura S, Takahashi H (1997) Application of nested polymerase chain reaction for the rapid diagnosis of infant botulism type B. Acta Paediatr Jpn 39: 346-348.
  • Kerner J (1820) Neue Beobachtungen u¨ber die in Wu¨rttemberg so haufig vorfallenden todlichen Vergiftungen durch den Genuss geräucherter Wu¨rste. Osiander, Tu¨bingen.
  • Klaubert B, Vujtovic-Ockenga N, Wermter R, Schad K, von Meyer L (2009) Determination of botulinum toxins after peptic sample pre-treatment by multidimensional nanoscale liquid chromatography and nano-electrospray ion-trap mass spectrometry. J Chromatogr B 877: 1084-1092.
  • Koransky JR, Allen SD, Dowell VR Jr (1978) Use of ethanol for selective isolation of sporeforming microorganisms. Appl Environ Microbiol 35: 762-765.
  • Lin WJ, Johnson EA (1995) Genome analysis of Clostridium botulinum type A by pulsed-field gel electrophoresis. Appl Environ Microbiol 61: 4441-4447.
  • Lindström M, Keto R, Markkula A, Nevas M, Hielm S, Korkeala H (2001) Multiplex PCR assay for detection and identification of Clostridium botulinum types A, B, E, and F in food and fecal material. Appl Environ Microbiol 67: 5694-5699.
  • Lindström M, Korkeala H (2006) Laboratory diagnostics of botulism. Clin Microbiol Rev 19: 298-314.
  • Lindström M, Nevas M, Hielm S, Lähteenmäki L, Peck MW, Korkeala H (2003) Thermal inactivation of nonproteolytic Clostridium botulinum type E spores in model fish media and in vacuum-packaged hot-smoked fish products. Appl Environ Microbiol 69: 4029-4036.
  • Lovenklev M, Holst E, Borch E, Rådström P (2004) Relative neurotoxin gene expression in Clostridium botulinum type B, determined using quantitative reverse transcription- PCR. Appl Environ Microbiol 70: 2919-2927.
  • Lynt RK, Kautter DA, Solomon HM (1981) Heat resistance of proteolytic Clostridium botulinum type F in phosphate buffer and crabmeat. J Food Sci 47: 204.
  • McGrath S, Dooley JS, Haylock RW (2000) Quantification of Clostridium botulinum toxin gene expression by competitive reverse transcription-PCR. Appl Environ Microbiol 66: 1423-1428.
  • Miller CA, Anderson AW (1971) Rapid detection and quantitative estimation of type A botulinum toxin by electroimmunodiffusion. Infect Immun 4: 126-129.
  • Nakamura K, Kohda T, Seto Y, Mukamoto M, Kozaki S (2013) Improved detection methods by genetic and immunological techniques for botulinum C/D and D/C mosaic neurotoxins. Vet Microbiol 162: 881-890.
  • Nevas M, Lindström M, Hielm S, Björkroth KJ, Peck MW, Korkeala H (2005) Diversity of proteolytic Clostridium botulinum strains, determined by a pulsed-field gel electrophoresis approach. Appl Environ Microbiol 71: 1311-1317.
  • Notermans S, Dufrenne J, Schothorst M (1978) Enzyme-linked immunosorbent assay for detection of Clostridium botulinum toxin type A. Jpn J Med Sci Biol 31: 81-85.
  • Peck MW (1997) Clostridium botulinum and the safety of refrigerated processed foods of extended durability. Trends Food Sci Technol 8: 186-192.
  • Pellett S (2013) Progress in cell based assay for botulinum neurotoxin detection. Curr Top Microbiol Immunol 364: 257-285.
  • Peruski AH, Johnson LH 3rd, Peruski LF Jr. (2002) Rapid and sensitive detection of biological warfare agents using time-resolved fluorescence assays. J Immunol Methods 263: 35-41.
  • Phillips RW, Abbott D (2008) High-throughput enzyme-linked immunoabsorbant assay (ELISA) electrochemiluminescent detection of botulinum toxins in foods for food safety and defence purposes. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25: 1084-1088.
  • Raphael BH, Andreadis JD (2007) Real-time PCR detection of the nontoxic nonhemagglutinin gene as a rapid screening method for bacterial isolates harboring the botulinum neurotoxin (A-G) gene complex. J Microbiol Methods 71: 343-346.
  • Raphael BH, Joseph LA, McCroskey LM, Lxquez C, Maslanka SE (2010) Detection and differentiation of Clostridium botulinum type A strains using a focused DNA microarray. Mol Cell Probes 24: 146-153.
  • Sachdeva A, Singh AK, Sharma SK (2013) An electrochemiluminescence assay for the detection of bio threat agents in selected food matrices and in the screening of Clostridium botulinum outbreak strains associated with type A botulism. J Sci Food Agric doi: 10.1002/jsfa.6310.
  • Saeed EMA (2004) Studies on isolation and identification of Clostridium botulinum investigating field samples specially from equine grass sickness cases. Doctoral Thesis, Goettingen University, Goettingen.
  • Schimdt JJ, Stafford RG, Millard CB (2001) High-throughput assays for botulinum neurotoxin proteolytic activity: serotypes A, B, D, and F. Anal Biochem 296: 130-137.
  • Sciacchitano CJ, Hirshfield IN (1996) Molecular detection of Clostridium botulinum type E neurotoxin gene in smoked fish by polymerase chain reaction and capillary electrophoresis. J AOAC Int 79: 861-865.
  • Scotcher MC, Cheng LW, Ching K, McGarvey J, Hnasko R, Stanker L (2013) Development and characterization of six monoclonal antibodies to hemagglutinin-70 of Clostridium botulinum and their application in a sandwich ELISA. Monoclon Antib Immunodiagn Immunother 32: 6-15.
  • Sesardic D, McLellan K, Ekong TA, Das RG (1996) Refinement and validation of an alternative bioassay for potency testing of therapeutic botulinum type A toxin. Pharmacol Toxicol 78: 283-288.
  • Sharma SK, Eblen BS, Bull RL, Burr DH, Whiting RC (2005) Evaluation of lateral-flow Clostridium botulinum neurotoxin detection kits for food analysis. Appl Environ Microbiol 71: 3935-3941.
  • Skinner GE, Gendel SM, Fingerhut GA, Solomon HA, Ulaszek J (2000) Differentiation between types and strains of Clostridium botulinum by riboprinting. J Food Prot 63: 1347-1352.
  • Smith LDS, Sugiyama H (1988) Botulism. The organism, its toxins, the disease. 2 nd ed., Charles C Thomas, Springfield III.
  • Suen JC, Hatheway CL, Steigerwalt AG, Brenner DJ (1988) Clostridium argentinense sp. nov.: A Genetically Homogeneous Group Composed of All Strains of Clostridium botulinum Toxin Type G and Some Nontoxigenic Strains Previously Identified as Clostridium subterminale or Clostridium hastiforme. Int J Syst Bacteriol 38: 375-381.
  • Szabo EA, Pemberton JM, Gibson AM, Eyles MJ, Desmarchelier PM (1994) Polymerase chain reaction for detection of Clostridium botulinum types A, B and E in food, soil and infant faeces. J Appl Bacteriol 76: 539-545.
  • Torii Y, Goto Y, Takahashi M, Ishida S, Harakawa T, Sakamoto T, Kaji R, Kozaki S, Ginnaga A (2009) Quantitative determination of biological activity of botulinum toxins utilizing compound muscle action potentials (CMAP), and comparison of neuromuscular transmission blockage and muscle flaccidity among toxins. Toxicon 55: 407-414.
  • Umeda K, Wada T, Kohda T, Kozaki S (2013) Multi - locus variable number tandem repeat analysis for Clostridium botulinum type B isolates in Japan: Comparison with other isolates and genotyping methods. Infect Genet and Evol 16: 298 - 304.
  • van Baar BL, Hulst AG, Jong de AL, Wils ER (2004) Characterisation of botulinum toxins type C, D, E, and F by matrix-assisted laser desorption ionisation and electrospray mass spectrometry. J Chromatogr A 1035: 97-114. van Ermengem EP (1897) Über einen neuen anaeroben Bacillus und seine Beziehung zum Botulismus. Zeitschrift fur Hygiene und Infektionskrankheiten 26: 1-56.
  • Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19: 6823-6831.
  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407-4414.
  • Wheeler C, Inami G, Mohle-Boetani J, Vugia D (2009) Sensitivity of mouse bioassay in clinical wound botulism. Clin Infect Dis 48: 1669-1673.
  • Wolffs P, Norling B, Rådström P (2005) Risk assessment of false-positive quantitative real-time PCR results in food, due to detection of DNA originating from dead cells. J Microbiol Methods 60: 315-323.
  • Yoon SY, Chung GT, Kang DH, Ryu C, Yoo CK, Seong WK (2005) Application of real-time PCR for quantitative detection of Clostridium botulinum type A toxin gene in food. Microbiol Immunol 49: 505-511.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.