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Summary Svalbard archipelago, a high latitude area in a region undergoing rapid climate
change, is relatively easily accessible for field research. This makes the fjords of Spitsbergen, its
largest island, some of the best studied Arctic coastal areas. This paper aims at answering the
question of how climatically diverse the fjords are, and how representative they are for the
expected future Arctic diminishing range of seasonal sea-ice. This study uses a meteorological
reanalysis, sea surface temperature climatology, and the results of a recent one-year meteoro-
logical campaign in Spitsbergen to determine the seasonal differences between different
Spitsbergen fjords, as well as the sea water temperature and ice ranges around Svalbard in
recent years. The results show that Spitsbergen fjords have diverse seasonal patterns of air
temperature due to differences in the SST of the adjacent ocean, and different cloudiness. The
sea water temperatures and ice concentrations around Svalbard in recent years are similar to
what is expected most of the Arctic coastal areas in the second half of this century. This makes
Spitsbergen a unique field study model of the conditions expected in future warmer High Arctic.
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1. Introduction

Arctic Ocean and the adjacent land masses are undergoing
intensive climate change (IPCC, 2013). It is a region where
temperature changes are 3—4 times greater than the average
for the Northern Hemisphere, as evidenced both by observa-
tional (Serreze et al., 2009) and paleo-data (Miller et al.,
2010). This phenomenon, called Arctic amplification (Manabe
and Stouffer, 1980), which makes the Arctic climate change
caused by any global radiative forcing greater than in other
climate zones, is caused by albedo changes due to the decline
in sea-ice extent and land snow cover, atmospheric and
oceanic heat advection, as well as changes in cloud cover
and water vapour (Serreze and Barry, 2011). This amplified
warming continues unabated as evidenced by some parts of
the Arctic Ocean up to +48C warmer in August 2015 than the
1982—2010 August mean in these regions (Timmermans and
Proshutinsky, 2015) and lands north of 608N being +2.98C
warmer in the period of October 2014—September 2015 than
in the beginning of 20th Century, being the warmest 12 month
period in the observational record beginning in 1900 (Over-
land et al., 2015).

The increasing Arctic temperatures go hand-in-hand with
the decline of the sea-ice extent, with trends negative in all
months (Simmonds, 2015), the smallest magnitude in May
(�30.45 � 103 km2 year�1), and the largest in September
(�88.96 � 103 km2 year�1). These trends are expected to
result in seasonal sea-ice or even all-year absence of ice
over almost the whole Arctic Ocean before year 2100
(Stroeve et al., 2012) or even before 2040 (Wang and Over-
land, 2009, 2012) although different prediction approaches
still leave a large uncertainty as to the date of the free of sea-
ice summer in the Arctic (Overland and Wang, 2013). Even in
a seasonal sea-ice mode, the Arctic Ocean is expected to be
covered by ice for a decreasing amount of days per annum.
According to recent estimates, the Arctic coastal waters will
be covered with ice for only half of the year in most High
Arctic coasts by 2015 and almost everywhere by 2070 (Barn-
hart et al., 2016).

Less sea-ice coverage will mean a more dynamic Arctic
Ocean with larger waves (Thomson and Rogers, 2014), more
intense storms (Long and Perrie, 2012) and more intensive
vertical mixing within the water column (Zhang et al., 2013),
which will increase the sea-ice retreat rate even further. All
these changes will influence the ecology of the Arctic Ocean
and the adjacent land masses (Post et al., 2009). The warm-
ing Arctic Ocean may also release large volumes of methane
stored in the form of hydrates and permafrost within shallow
marine sediments (Biastoch et al., 2011), creating a strong
positive feedback of the global warming (DeConto et al.,
2012), although the time scale of the involved processes is
still poorly constrained (James et al., 2016).

Rapid warming of the Arctic has not omitted Spitsbergen,
the main island of the Svalbard archipelago. The summer
temperatures in 2015 were the highest in recorded history
(Overland et al., 2015), including the composite Longyear-
byen-Svalbard Airport record, which goes back to 1898
(Nordli et al., 2014). The Atlantic waters of the West Spits-
bergen Current are getting warmer (Piechura et al., 2002;
Walczowski et al., 2012), which in turn increases the calving
rates of the Svalbard tidewater glaciers (Luckman et al.,
2015). The glaciers are retreating (Błaszczyk et al., 2009),
which expands the area of Svalbard fjords such as Horsund
(Błaszczyk et al., 2013) in such a spectacular way that the
misnamed fjord may become a real sound before 2035 (Ziaja
and Ostafin, 2015).

This paper aims at answering the question, whether this
easily accessible archipelago, a popular place for Arctic
research (Research in Svalbard database, https://www.
researchinsvalbard.no/, lists 413 ongoing projects) may
already be a study model of the environment of High Arctic
coastal areas as it is expected to become in the next decades
of the 21st century.

2. Methods

For the values of climate-related fields in the region of
Svalbard, I used NCEP/NCAR reanalysis (Kalnay et al.,
1996). It is a lower resolution reanalysis (2.58 � 2.58) than
ERA-40 (Uppala et al., 2005), but it avoids the spurious Arctic
temperature trends of ERA-40 (Screen and Simmonds, 2011).
The low resolution also has the advantage of not introducing
too many degrees of freedom to the temperature fields in a
region sparsely and non-uniformly covered by data. For the
sea surface temperatures (SST), I used a recent SST climatol-
ogy, in situ merging and satellite data, created for the WMO
recommended base for the period 1981—2010 (Xue et al.,
2011), a 18 � 18 update of an earlier SST climatology (Xue
et al., 2003), available at http://origin.cpc.ncep.noaa.gov/
products/people/yxue/sstclim/. Because there is little long
term temperature data from inland Spitsbergen for seasonal
temperature averages available, I used results from a recent
12 month measurement campaign (Przybylak et al., 2014),
involving 30 meteorological stations placed all over Svalbard.
All figures were prepared using the R language (R Core Team,
2017).

3. Results and discussion

The NCEP/NCAR reanalysis provides fields of meteorological
parameters which, although of low spatial resolution, are
temporally homogeneous since mid-20th century in the Arc-
tic (Screen and Simmonds, 2011). Svalbard is covered very
sparsely with meteorological stations and most of them are
placed on the warmer western side. I used the reanalysis
node with a centre in South-West Spitsbergen (77.58N, 158E)
to analyse the warming trend in Svalbard. This approach has
an additional advantage, which is the possibility to check the
trends against the neighbouring stations, the data from which
has recently been analysed by Gjelten et al. (2016). The
annual averages for the NCEP/NCAR near-surface atmo-
spheric temperature time series (1950—2015) are shown in
Fig. 1 together with the trend line and trend 95%
confidence range. The linear trend for the annual average
temperatures since 1950 is +0.60 K decade�1 (with uncer-
tainty of �0.17 K decade�1 at 95% confidence). This corre-
sponds to a 3.9 K warming since 1950. The trend is over
4 times the global one, showing that Svalbard is a good study
case of the Arctic amplification. Because the Gjelten et al.
(2016) temperature trends are calculated for the period
1979—2015, I have also calculated the linear temperature
trend for the same period. Its value is +0.89 K decade�1

https://www.researchinsvalbard.no/
https://www.researchinsvalbard.no/
http://origin.cpc.ncep.noaa.gov/products/people/yxue/sstclim/
http://origin.cpc.ncep.noaa.gov/products/people/yxue/sstclim/


Figure 1 The annual near-surface air temperature averages,
1950—2015 from NCEP/NCAR reanalysis for South-West Spitsber-
gen. Linear trend and its uncertainty (95% confidence level) are
marked with the dashed and the dotted line respectively.

2 4 6 8 10 12

−2
0

−1
5

−1
0

−5
0

5

Month

Av
er

ag
e 

m
on

th
ly

 te
m

pe
ra

tu
re

 [ °
C

]

Hornsund
Akseløya
Longyerby en Ai rpo rt
Barentsburg
Ny−Ålesund
Skote hytta
Edgeøya
Vest fonna

Figure 3 Monthly average near-surface temperatures
recorded by meteorological stations in different Svalbard fjords
from a one-year campaign of Przybylak et al. (2014).
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(�0.32 K decade�1 at 95% confidence). This trend from
the NCEP/NCAR reanalysis is lower than the station trends
which are as follows: 0.96 K decade�1 for Ny-Ålesund,
1.03 K decade�1 for Hornsund, 1.06 K decade�1 for Bare-
ntsburg and 1.29 K decade�1 for the Svalbard Airport. The
difference in the trends lies within statistical uncertainty,
but it may also be caused by the larger spatial range of the
reanalysis node covering also parts of the adjacent sea.

Fig. 2 shows the average near-surface atmospheric tem-
perature data for all months since the year 1950. It presents
12 temperature graphs next to one another in a way that
makes it possible to visually estimate the variability and
trends for each month. The monthly averages in the recent
years are similar to the locally measured ones (Cisek et al.,
2017). It is clear from the figure that most of the warming
since 1950 is confined to the coldest months, while the
summers (especially June and July) have no warming trend.
In fact the two months are the only ones with no statistically
significant warming trend since 1950. The trends for the
remaining ten months vary between +0.17 K decade�1

(�0.16 K decade�1 at 95% confidence) for May and
+1.42 K decade�1 (�0.50 K decade�1 at 95% confidence) for
January.

Recent temperature data measured at 30 Svalbard sta-
tions during a one-year campaign (Przybylak et al., 2014).
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Figure 2 Near-surface air temperature averages for each
month. Each month graph presents averages of each year in
the range of 1950—2015 from NCEP/NCAR reanalysis for South-
West Spitsbergen near Hornsund. Monthly means for the whole
period are marked with horizontal lines.
Fig. 3 shows the monthly average temperatures from eight
stations. Six of them are located in different Spitsbergen
fjords, all close to sea-level to avoid the effect of altitude:
Hornsund, Akseløya (in Bellsund), Longyearbyen Airport and
Barentsburg (both in Isfjorden), Ny-Ålesund (in Kongsfjorden)
and Skotehytta (near Pyramiden). The remaining two are
placed on different islands, Edgeøya and Nordaustlandet
(near Vestfonna glacier). Although the data is only from
one year, the seasonal differences between Hornsund and
Ny-Ålesund are similar to the ones derived from longer series
(Cisek et al., 2017), which increases the confidence that the
temperature range is representative for Svalbard fjords. The
largest temperature differences are in winter (with the range
of average January temperatures between �16.1 and
�12.58C (respectively for Akseloya and Hornsund) and in
summer (from +3.9 to +7.18C, respectively for Hornsund
and Skotehytta). It is worthy of note that not the same fjords
are warmest in summer and in winter (with Hornsund warm-
est in winter and coldest in summer). Coastal areas of
Nordaustlandet island (represented by the Vestfonna station)
are colder than all the coastal Spitsbergen stations during all
seasons. Its annual monthly mean temperature variability if
from �22.38C in January to +1.18C in July. This is caused by its
north-eastern position and sea-ice coverage of adjacent
ocean during most of the year. On the other hand, the
Edgeøya station on an island east of Spitsbergen shows
seasonal variability different than other stations with tem-
peratures similar to the Spitsbergen coastal regions in
autumn and winter while colder during the spring and sum-
mer. This shows the Svalbard fjords to be a diverse ensemble
with different seasonal temperature patterns controlled by
different processes.

One of the sources of differences in climate of different
parts of Spitsbergen is the amount of clouds, influencing
radiative fluxes. Fig. 4 shows the cloud coverage for the four
seasons (averaged from the period 2010 to 2014) from NCEP/
NCAR reanalysis. The cloudiness values from this product are
underestimations of observed values, but they are useful for
radiative forcing calculations (Weare, 1997) and no other
analysis correlates better with satellite derived Arctic clou-
diness on the time-scale of months (Liu and Key, 2016). In
winter and spring, the largest cloudiness is over the
warm waters of the West Spitsbergen Current and the



Figure 4 The average cloud coverage (2011—2015) for each season calculated from NCEP/NCAR reanalysis data.

J. Piskozub/Oceanologia 59 (2017) 612—619 615
south-eastern part of Svalbard, including Hornsund (a result
confirmed by the local station data analysis from Hornsund
and Ny-Ålesund in Cisek et al., 2017). In summer and autumn,
the coastal areas both in the east and west of the island, have
more clouds than the inland Spitsbergen. These patterns
explain why Hornsund is warmest in winter when clouds have
a warming forcing in the Arctic (Lubin and Vogelmann, 2006),
while Skotehytta (the most inland station in Fig. 3) is warmest
in summer. Arctic clouds work as a positive radiative forcing
because the effect of blocking outgoing longwave radiation
(the Arctic emits to space on average net 100 W m�2) is more
important than blocking incoming (solar) shortwave radiation
during autumn and winter months of the “polar night” (Porter
et al., 2010) and also, more surprisingly, during the spring
(Francis and Hunter, 2007).

The cloud coverage is related to the SST, as the sea surface
is the source of atmospheric water vapour (although other
factors, such as wind direction, are also important). Fig. 5
shows the seasonal averages from a SST 1981 to 2010 clima-
tology (Xue et al., 2011). The average sea surface tempera-
tures to the west of Spitsbergen, in the Greenland Sea, are
above zero in all months while to the east, in the Barents Sea,
they are below zero for five months in the year (January—
May). This East—West difference is larger then the South—
North one along the Svalbard shores. The difference between
the western part of the archipelago warmed by the West
Spitsbergen Current (Walczowski and Piechura, 2011) and
the cold eastern one, creates the large variability of envir-
onment in Svalbard, influencing the length of the snow-free
and ice-free seasons, on the islands and in the adjacent seas
respectively.

Fig. 6 presents the seasonal average sea-ice concentration
for the period 2011—2015 calculated from the NCEP/NCAR
reanalysis. It shows that Svalbard is recently practically free



Figure 5 The sea surface temperature seasonal averages calculated from SST 1981—2010 climatology (Xue et al., 2011). The
climatology 18 � 18 grid data have not been interpolated. The white areas are grid nodes treated as land in the climatology.
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of sea-ice in autumn. During the summer (JJA) sea-ice is
sporadic in the north and east. On the other hand, winter and
spring are the seasons in which the east coast of Svalbard is
ice bound. The sea-ice reaches its maximum extent in May,
when in the east of Svalbard, in the Barents Sea, it sometimes
reaches Bjørnøya (Bear Island). This seasonal pattern means
that the east and north coasts of Svalbard are ice-bound for
about half a year, a state expected to be typical of the Arctic
coastal areas only in about 50 years (Barnhart et al., 2016)
while its West coast, with most of the easily accessible fjords,
is already similar in to the ice-free conditions expected in the
Arctic close to the end of the 21st century. The seasonal
patterns of the sea-ice explain the SST patterns from Fig. 5,
as sea water temperature cannot be positive with sea-ice
present, therefore implying similar ones for the future High
Arctic (IPCC, 2013). This makes Svalbard in general, and
Spitsbergen fjords in particular, a natural laboratory
of environmental changes expected in the future in the
coasts of regions such as Greenland or the Canadian Arctic
Archipelago.

4. Conclusions

Svalbard is an Arctic archipelago with warming trends
exceeding the global average by at least four times with



Figure 6 The average sea-ice concentration (2011—2015) for each season calculated from NCEP/NCAR reanalysis data.
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most of the warming in the coldest months of the year. Its
fjords represent diverse seasonal patterns of temperature
due to some differences in the SSTof the adjacent ocean, and
the resulting different cloudiness. The sea water tempera-
tures and ice concentrations in recent years are similar to
what is expected in most of the Arctic coastal areas later this
century. All this argues for using Svalbard as a model of future
changes in the Arctic coastal ecosystems.
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