PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 20 | 1 |

Tytuł artykułu

Postnatal variation in ectoparasite (Spinturnix emarginata) load in neonates of Geoffroy's bat (Myotis emarginatus): how fast do young bats become infested with ectoparasites?

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We studied, simultaneously, postnatal variation in ectoparasite load in neonates, lactating, pregnant and non-pregnant females — in a free-ranging nursing colony of Geoffroy's bat (Myotis emarginatus) in Kerend Cave, western Iran. During this survey we monitored 120 (78 ♂♂, 42 ♀♀) neonate bats, as well as 21 pregnant, 42 lactating and 15 non-pregnant females. These individuals yielded a total of 1857 wing mites of the species Spinturnix emarginata. The first 14 days following the birth of pups was found to be associated with a rapid increase in numbers of S. emarginata on the neonates — up to an average (± SE) 21.3 ± 5.34 ectoparasites per individual. This was followed by a sudden reduction in parasite load to a stabilised rate of 5.9 ± 0.98 parasites per individual at the end of the postnatal period. The average ectoparasite load for all neonates over 42 days of the postnatal period was 11.5 ± 0.81. No significant difference was noted as regards average parasite load for neonate males (11.9 ± 1.11) and females (10.8 ± 1.06). In contrast, the average parasite load for lactating females (at 8.6 ± 0.93) was significantly higher than the corresponding figure for pregnant females (4.1 ± 0.39). The average parasite loads for lactating females and neonates do not differ significantly. Where reference was made to the ratio of body mass to length of forearm, no significant correlation was found between parasite load and body condition among either male or female neonates, or pregnant, lactating and non-pregnant females. The study therefore confirms that host-parasite interactions between the bat M. emarginatus and the wing mite S. emarginata is tuned proximally in such a way that bat hosts at any stages of their life cycle (male and female pups, pregnant, lactating, and non-productive females and adult males) resist parasites without paying the costs of parasitism in terms of reduced body mass or length adjusted body mass (W/FA).

Słowa kluczowe

Wydawca

-

Rocznik

Tom

20

Numer

1

Opis fizyczny

p.187-194,fig.,ref.

Twórcy

autor
  • Department of Biology, Faculty of Sciences, Razi University, Baghabrisham, 6714967346, Kermanshah, Iran
autor
  • Department of Biology, Faculty of Sciences, Razi University, Baghabrisham, 6714967346, Kermanshah, Iran
  • Department of Biology, Faculty of Sciences, Razi University, Baghabrisham, 6714967346, Kermanshah, Iran
autor
  • Department of Biology, Faculty of Sciences, Razi University, Baghabrisham, 6714967346, Kermanshah, Iran
autor
  • Department of Biology, Faculty of Sciences, Razi University, Baghabrisham, 6714967346, Kermanshah, Iran

Bibliografia

  • 1. Altringham, J. D. 1999. Bats: biology and behavior. Oxford University Press, Oxford, 262 pp. Google Scholar
  • 2. Benda, P., K. Faizolâhi, M. Andreas, J. Obuch, A. Reiter, M. Ševčík, and S. Ashrafi. 2012. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 10. Bat fauna of Iran. Acta Societatis Zoologicae Bohemicae, 76: 163–582. Google Scholar
  • 3. Brown, C. R., and M. B. Brown. 2000. Heritable basis for choice of group size in a colonial bird. Proceedings of the National Academy of Sciences of the USA, 97: 14825–14830. Google Scholar
  • 4. Christe, P., R. Arlettaz, and P. Vogel. 2000. Variation in intensity of a parasitic mite (Spinturnix myoti) in relation to the reproductive cycle and immunocompetence of its bat host (Myotis myotis). Ecology Letters, 3: 207–212. Google Scholar
  • 5. Christe, P., O. Glaizot, G. Evanno, N. Bruyndonckx, G. Devevey, G. Yannic, P. Patthey, A. Maeder, P. Vogel, and R. Arlettaz. 2007. Host sex and ectoparasites choice: preference for, and higher survival on female hosts. Journal of Animal Ecology, 76: 703–710. Google Scholar
  • 6. Clayton, D. H., and D. M. Tompkins. 1994. Ectoparasite virulence is linked to mode of transmission. Proceedings of the Royal Society of London, 256B: 211–217. Google Scholar
  • 7. Deerenberg, C., V. Arpanius, S. Daan, and N. Bos. 1997. Re productive effort decreases antibody responsiveness. Pro ceeding of the Royal Society of London, 264B: 1021–1029. Google Scholar
  • 8. Eckstein, R. A., and B. L. Hart. 2000. Grooming and control of fleas in cats. Applied Animal Behavior Science, 68: 141–150. Google Scholar
  • 9. Giorgi, M. S., R. Arlettaz, F. Guillaume, S. Nussle, C. Ossola, P. Vogel, and P. Christe. 2004. Causal mechanisms underlying host specificity in bat ectoparasites. Oecologia, 138: 648–654. Google Scholar
  • 10. Grossman, C. J. 1985. Interactions between gonadal steroids and the immune system. Science, 227: 257–261. Google Scholar
  • 11. Haig, D. 1993. Genetic conflicts in human pregnancy. Quarterly Review of Biology, 68: 495–532. Google Scholar
  • 12. Hart, B. L. 1992. Behavioral adaptations to parasites: an ethological approach. Journal of Parasitology, 78: 256–265. Google Scholar
  • 13. Hawlena, H., I. S. Khokhlova, Z. Abramsky, and B. R. Krasnov. 2006. Age, intensity of infestation by flea parasites and body mass loss in a rodent host. Parasitology, 133: 187–193. Google Scholar
  • 14. Hogarth, P. J. 1982. Immunological aspects of mammalian reproduction. Blackie and Son Press, Glasgow, viii + 196 pp. Google Scholar
  • 15. Horáček, I., V. Hanák, and J. Gaisler. 2000. Bats of the Palearctic region: a taxonomic and biogeographic review. Pp. 11–157, in Proceedings of the VIIIth European Bat Research Symposium. CIC ISEZ PAN, Kraków, 273 pp. Google Scholar
  • 16. Khokhlova, I. S., B. R. Krasnov, M. Kam, N. I. Burdelova, and A. A. Degen. 2002. Energy cost of ectoparasitism: the flea Xenopsyll aramesis on the desert gerbil Gerbillus dasyurus. Journal of Zoology (London), 258: 349–354. Google Scholar
  • 17. Klein, S. L. 2004. Hormonal and immunological mechanisms mediating sex differences in parasite infection. Parasite Immunology, 26: 247–264. Google Scholar
  • 18. Krasnov, B., I. Khokhlova, and G. Shenbrot. 2002. The effect of host density on ectoparasite distribution: an example of a rodent parasitized by fleas. Ecology, 83: 164–175. Google Scholar
  • 19. Kulzer, E., and E. Müller. 1997. Die Nutzung eines Kirchendaches als ‘Wochenstube’ durch Mausohr-Fleder mäuse (Myotis myotis Borkhausen). Veröffentlichungen für Naturschutz und Landschaftspflege in Baden-Württemberg, 71: 267–326. Google Scholar
  • 20. Lewis, S. E. 1996. Low roost-site fidelity in pallid bats: associated factors and effect on group stability. Behavioral Ecology and Sociobiology, 39: 335–344. Google Scholar
  • 21. Lourenço, S. I., and J. M. Palmeirim. 2007. Can mite parasitism affect the condition of bat hosts? Implications for the social structure of colonial bats. Journal of Zoology (London), 273: 161–168. Google Scholar
  • 22. Lučan, R. K. 2006. Relationships between the parasitic mite Spinturnix andegavinus (Acari: Spinturnicidae) and its bat host, Myotis daubentonii (Chiroptera: Vespertilionidae): seasonal, sex and age-related variation in infestation and possible impact of the parasite on the host condition and roosting behavior. Folia Parasitologica, 53: 147–152. Google Scholar
  • 23. Moshkin, M. P., A. K. Dobrotvorsky, V. V. Mak, V. V. Panov, and E. A. Dobrotvorskaya. 1998. Variability of immune response to heterologous erythrocytes during population cycles of red (Clethrionomys rutilus) and bank (C. glareolus) voles. Oikos, 82: 131–138. Google Scholar
  • 24. Orlova, M. V., M. K. Stanyukovich, and O. L. Orlov. 2016. Gamasid mites (Mesostigmata: Gamasina) parasitizing bats (Chiroptera: Rhinolophidae, Vespertilionidae, Molossidae) of Palaearctic boreal zone (Russia and adjacent countries) ( A. S. Babenko, ed.). Publishing House of Tomsk State University, Tomsk, ill + 150 pp. Google Scholar
  • 25. Patterson, B. D., C. W. Dick, and K. Dittmar. 2008. Sex biases in parasitism of neotropical bats by bat flies (Diptera: Streblidae). Journal of Tropical Ecology, 24: 387. Google Scholar
  • 26. Piraccini, R. 2016. Myotis emarginatus. The IUCN Red List of Threatened Species 2016: e.T14129A22051191. Available at http://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T14129A22051191.en. Downloaded on 16 June 2018. Google Scholar
  • 27. Postawa, T., and A. Furman. 2014. Abundance patterns of ectoparasites infesting different populations of Miniopterus species in their contact zone in Asia Minor. Acta Chiropterologica, 16: 387–395. Google Scholar
  • 28. Reinhardt, K., R. A. Naylor, and M. T. Siva-Jothy. 2008. Temperature and humidity differences between roosts of the fruit bat, Rousettus aegyptiacus (Geoffroy, 1810), and the refugia of its ectoparasite, Afrocimex constrictus. Acta Chiropterologica, 10: 173–176. Google Scholar
  • 29. Sharifi, M., Z. Hemmati, and P. Rahimi. 2000. Distribution and conservation status of bats from Iran. Myotis, 38: 61–68. Google Scholar
  • 30. Sharifi, M., F. Mozafari, N. Taghinezhad, and H. Javanbakht. 2008. Variation in ectoparasite load reflects life history traits in the lesser mouse-eared bat Myotis blythii (Chi roptera: Vespertilionidae) in western Iran. Journal of Para sitology, 94: 622–625. Google Scholar
  • 31. Sharifi, M., N. Taghinezhad, F. Mozafari, and S. Vaissi. 2013. Variation in ectoparasite load in the Mehely's horseshoe bat, Rhinolophus mehelyi (Chiroptera: Rhinolophidae) in a nursery colony in western Iran. Acta Parasitologica, 58: 180–184. Google Scholar
  • 32. Sundari, A. A., W. Bogdanowicz, D. R. Varman, G. Marimuthu, and K. E. Rajan. 2012. Ectoparasite Raymondia lobulata infestation in relation to the reproductive cycle of its host — the greater false vampire bat Megaderma lyra. Journal of Parasitology, 98: 60–62. Google Scholar
  • 33. ter Hofstede, H. M., and M. B. Fenton. 2005. Relationships between roost preferences, ectoparasite density, and grooming behavior of neotropical bats. Journal of Zoology (London), 266: 333–340. Google Scholar
  • 34. Theron, A., A. Rognon, and J. R. Pages. 1998. Host choice by larval parasites: a study of Biomphalaria glabrata snails and Schistosoma mansoni miracidia related to host size. Parasitology Research, 84: 727–732. Google Scholar
  • 35. Webber, Q. M., L. P. McGuire, S. B. Smith, and C. K. Willis. 2015. Host behaviour, age and sex correlate with ectoparasite prevalence and intensity in a colonial mammal, the little brown bat. Behaviour, 152: 83–105. Google Scholar
  • 36. Willis, C. K., and R. M. Brigham. 2007. Social thermoregulation exerts more influence than microclimate on forest roost preferences by a cavity-dwelling bat. Behavioral Ecology and Sociobiology, 62: 97–108. Google Scholar
  • 37. Zahn, A., and D. Rupp. 2004. Ectoparasite load in European vespertilionid bats. Journal of Zoology (London), 262: 383–391. Google Scholar
  • 38. Zuk, M. 1996. Disease, endocrine-immune interactions, and sexual selection. Ecology, 77: 1037–1042. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-6d66b376-5a66-461d-968b-34c899e8f3f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.