PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 21 | 6 |

Tytuł artykułu

Comparison of different interpolation methods for investigating spatial variability of rainfall erosivity index

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The objective of our study was to expand the R factor of the RUSLE model, erosivity index by its estimation from more readily available rainfall erosivity indexes and parameters in stations without rainfall intensity data, and to determine the most accurate interpolation method for preparing an erosivity index map. Among different erosivity indexes and parameters based on rainfall amounts, only the modified fournier Index (FImod) was highly correlated with EI30 in 20 synoptic stations. A local model was used for estimating EI30 from FImod in the other 66 stations without rainfall intensity data. The spatial variability of the calculated EI30 in all of the stations was different at an azimuth of 32º when compared to the other directions. Moreover, the nuggetto- sill ratio of the semivariogram (0.27) confirmed a strong spatial correlation of EI30. The inverse distance weighting (IDW), spline, kriging, and cokriging methods with elevation as a covariable were compared by a cross-validation technique. The root mean square error (RMSE) value of the cokriging method when compared to that of the IDW, kriging, and spline methods in the study area declined by 11%, 3%, and 4%, respectively. The output maps for all of the interpolation methods followed similar decreasing trends from west to east, with the highest erosivity index (1,450 MJ·mm·ha⁻¹·h⁻¹·y⁻¹) found in the west. This pattern corresponds with the pattern of climatic change from subhumid to semiarid.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

21

Numer

6

Opis fizyczny

p.1659-1666,fig.,ref.

Twórcy

autor
  • Young Researchers club, Takestan Branch, Islamic Azad University, Takestan, Iran
autor
  • Organization of Research, Education and Extension, Agriculture Ministry, Tehran, Iran
autor
  • Faculty of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, P.O. Box 14515/775, Tehran, Iran
autor
  • Soil Conservation and Watershed Management Research Institute, Tehran, Iran
  • Department of soil science, Faculty of Agriculture, Islamic Azad University, Shoushtar Branch, Shoushtar, Iran

Bibliografia

  • 1. TOY T.J., FOSTER G.R., RENARD K.G. Soil Erosion: Processes, Prediction, Measurement, and Control. John Wiley & Sons, Inc., New York, 2002.
  • 2. HOYOS N., WAYLEN P.R., JARAMILLO A. Seasonal and spatial patterns of erosivity in a tropical watershed of the Colombian Andes. J. Hydrol. 314, 177, 2005.
  • 3. SHAMSHAD A., AZHARI M.N., ISA M.H., WAN HUSSIN W.M.A., PARIDA B.P. Development of an appropriate procedure for estimation of RUSLE EI30 index and preparation of erosivity maps for Pulau Penang in Peninsular Malaysia. Catena. 72, 423, 2008.
  • 4. BURROUGH P.A. GIS and geostatistics: Essential partners for spatial analysis. Environ. Ecol. Stat. 8, (4), 361, 2001.
  • 5. GOOVAERTS P. Geostatistics for natural resources evaluation. New York, Oxford University Press, 1997.
  • 6. ZHANG K., HONG W., WU C-Z., DING X. Study on the Spatial Pattern of Rainfall Erosivity Based on Geostatistics and GIS of Fujian Province. Journal of Mountain Science. 27, (5), 538, 2009.
  • 7. MEN M., YU Z., XU H. Study on the Spatial Pattern of Rainfall Erosivity Based on Geostatistics of Hebei Province, China. Front Agric. China. 2, (3), 281, 2008.
  • 8. LLOYD C.D. Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J. Hydrol. 308, 128, 2005.
  • 9. VERWORN A., HABERLANDT U. Spatial interpolation of hourly rainfall effect of additional information, variogram inference and storm properties. Hydrol. Earth Syst. Sci. 15, 569, 2011.
  • 10. DIODATO N., CECCARELLI M. Interpolation processes using multivariate geostatistics for mapping climatological precipitation mean in the Sannio Mountains (Southern Italy). Earth Surface Processes and Landforms. 30, 259, 2005.
  • 11. BROWN L.C., FOSTER G.R. Storm erosivity using idealized intensity distributions. Trans. A.S.A.E. 30, 379, 1987.
  • 12. COHEN M.J., SHEPHERD K.D., WALSH M.G. Empirical formulation of the universal soil loss equation for erosion risk assessment in a tropical watershed. Geoderma. 124, 235, 2005.
  • 13. ARNOLDUS H.M.J. An Approximation to the Rainfall Factor in the Universal Soil Loss Equation. In: De Boodt M, Gabriels M (Eds) Assessment of Erosion, Wiley, Chechester: UK, pp. 127-132, 1980.
  • 14. CICCACCI S., FREDI P., LUPIA PALMIERI E., PUGLIESE F. Indirect evaluation of erosion entity in drainage basins through geomorphic, climatic and hydrological parameters. International Geomorphology. 2, 33, 1986.
  • 15. TAGHIZADEH MEHRJARDI R., ZAREIAN JAHROMI M., MAHMODI S.H., HEIDARI A. Spatial distribution of groundwater quality with geostatistics (case study: Yazd-Adrakan Plain). World Appl. Sci. J. 4, (1), 9, 2008.
  • 16. LU G.Y., WONG D.W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci-Uk. 34, 1044, 2008.
  • 17. OUYANG Y., ZHANG J.E., OU L.T. Temporal and spatial distributions of sediment total organic carbon in an estuary river. J. Environ. Qual. 35, (1), 93, 2006.
  • 18. CAMBARDELLA C. A., MOORMAN T. B., NOVAK J. M., PARKIN T. B., KARLEN D. L., TURCO R. F., KONOPKA A. E. Field-scale variability of soil properties in Central Iowa soils. Soil Science Society of America Journal. 58, 1501, 1994.
  • 19. BASKAN O., CEBEL H., AKGUL S., ERPUL G. Conditional simulation of USLE/RUSLE soil erodibility factor by geostatistics in a Mediterranean catchment, Turky. Environ. Earth. Sci. 60, (6), 1179, 2010.
  • 20. WANG G., GERTNER G., SINGH V., SHINKAREVA S., PARYSOW P., ANDERSON A. Spatial and temporal prediction and uncertainty of soil loss using the revised universal soil loss equation: a case study of the rainfall-runoff erosivity R factor. Ecol. Model. 153, 143, 2002.
  • 21. YU B., HASHIM G.M., EUSOF Z. Estimating the r-factor with limited rainfall data: a case study from peninsular Malaysia. J. Soil. Water. Conserv. 56, 101, 2001.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6c9d6020-4631-4bb3-9f05-d7092cb9309c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.