PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 2 |

Tytuł artykułu

Assessment of in vitro multiplication of Lemna minor in the presence of phenol: plant/bacteria system for potential bioremediation - part I

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this work was to examine the multiplication of the common duckweed (Lemna minor), an aquatic plant species widespread in European stagnant waters, in two different media (Murashige – Skoog and Hoagland) with and without phenol supplementation. In order to quantify plant multiplication we have used relative growth rate and tolerance indices on both tested media and at five phenol concentrations (10, 15, 20, 30 and 100 mg/L). Furthermore, we examined the possibility of phenol removal from aqueous media containing different phenol concentrations, by using plant/bacteria system consisting of the duckweed and its naturally occurring microbial populations. After 7 days, number of newly formed fronds was approximately four times higher than at the beginning of the experiment on both tested media. The most important result in this study was removal of 70% of phenol from the highest initial concentration of 100 mg/L, in mixed cultures of duckweed and bacteria. By comparison, aseptic duckweed cultures removed approximately 50% of phenol at the same initial concentration. Our duckweed specimen showed a fast reproduction rate, high tolerance to phenol and a possible cooperation with rhizosphere-associated bacteria. All of these traits can be ultimately utilized for bioremediation purposes.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

2

Opis fizyczny

p.803-809,fig.,ref.

Twórcy

autor
  • Institute for Chemistry, Technology and Metallurgy, Njegoseva 12, Belgrade, Serbia
autor
  • Department for Plant Physiology, Institute for Biological Research “Sinisa Stankovic”, Bulevar Despota Stefana 152, Belgrade, Serbia
autor
  • Department for Plant Physiology, Institute for Biological Research “Sinisa Stankovic”, Bulevar Despota Stefana 152, Belgrade, Serbia
autor
  • Mining and Metallurgy Institute Bor, Zeleni bulevar 35, Bor, Serbia
autor
  • Institute of General and Physical Chemistry, Studentski Trg 12-16, Belgrade, Serbia
autor
  • Faculty of Engineering and International Management, Carigradska 28, Belgrade, Serbia

Bibliografia

  • 1. APPENROTH K.J., BORISJUK N., LAM E. Telling duckweed apart: Genotyping technologies for the Lemnaceae. Chin. J. Appl. Environ. Biol. 19, 1, 2013.
  • 2. WANG W., ET AL. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat. Commun. 5, 3311, 2014.
  • 3. ZIEGLER P., SREE K.S., APPENROTH K.J. Duckweeds for water remediation and toxicity testing. Toxicol. Environ. Chem. 98, 1127, 2016.
  • 4. ZIEGLER P., ADELMANN K., ZIMMER S., SCHMIDT C., APPENROTH K.J. Relative in vitro growth rates of duckweeds (Lemnaceae) - the most rapidly growing higher plants. Plant Biol (Stuttg). 17 (1), 33, 2015.
  • 5. ZHAO Y., FANG Y., JIN Y., HUANG J., BAO S., FU T., HE Z., WANG F., ZHAO H. Potential of duckweed in the conversion of wastewater nutrients to valuable biomass: A pilot-scale comparison with water hyacinth. Biores. Technol. 163, 82, 2014.
  • 6. MAHAR A., WANG P., ALI A., AWASTHI M.K., LAHORI A.H., WANG Q., LI R., ZHANG Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Safety. 126, 111, 2016.
  • 7. ZHOU Y.R., LU Y.F., ZHANG H.L., SHI W.M. Aerobic denitrifying characteristics of duckweed rhizosphere bacterium RWX31. Afr. J. Microbiol. Res. 7, 211, 2013.
  • 8. YAMAGA F., WASHIO K., MORIKAWA M. Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 isolated from rhizosphere of duckweed Lemna aoukikusa. Environ. Sci. Technol. 44, 6470, 2010.
  • 9. OGATA Y., TOYAMA T., YU N., WANG X., SEI K., IKE M. Occurence of 4-tert-butylphenol (4-t-BP) biodegradation in an aquatic sample caused by the presence of Spirodela polyrrhiza and isolation of a 4-t-BP-utilizing bacterium. Biodegr. 24, 191-202, 2013.
  • 10. TOYAMA T., SEI K., YU N., KUMADA H., INOUE D., HOANG H, SODA S., CHANG Y.C., KIKUCHI S., FUJITA M., IKE M. Enrichment of bacteria possessing catechol dioxygenase genes in the rhizosphere of Spirodela polyrrhiza: a mechanism of accelerated biodegradation of phenol. Water Res. 43 (15), 3765, 2009.
  • 11. Medical Management Guidelines for Phenol. Agency for Toxic Substances and Drugs Registry (ATSDR), available at: https://www.atsdr.cdc.gov/MMG/MMG.asp?id=144&tid=27, 2017.
  • 12. PAISIO C.E., TALANO M.A., GONZALES P.S., NOGUERA C.M., KURINA-SANZ M., AGOSTINI E. Biotechnological tools to improve bioremediation of phenol by Acinetobacter sp. RTE 01.4. Environ. Technol. 37, 2379, 2016.
  • 13. PINDI P.K., YADAV P.R., KODAPARTHI A. Bacteriological and Physico-Chemical Quality of Main Drinking Water Sources. Pol. J. Environ. Stud. 22 (3), 825, 2013.
  • 14. NEZIRI A., MALOLLARI I., PAHO E., PAMBUKU A. Persistent organic pollutants in Buna river basin groundwaters (Albania). J. Environ. Protect. Ecology. 15 (2), 405, 2014.
  • 15. POPA M., GLEVITZKY M., POPA D. M., DUMITRIEL G.A. Study Regarding The Water Contamination And The Negative Effects On The Population From The Blaj Area, Romania. J. Environ. Protect. Ecology. 15 (4), 1543, 2014.
  • 16. HAMIDOVIĆ S., TEODOROVIĆ S., LALEVIĆ B., JOVIČIĆ-PETROVIĆ J., JOVIĆ J., KIKOVIĆ D., RAIČEVIĆ V. Bioremediation Potential Assessment of Plant Growth-Promoting Autochthonous Bacteria: a Lignite Mine Case Study. Pol. J. Environ. Stud. 25 (1), 113, 2016.
  • 17. JUN CHEN, LI ZHANG, QING JIN, CUIZHU SU, LEI ZHAO, XIAOXIANG LIU, SHUMENG KOU, YUJING WANG, MING XIAO. Bioremediation of phenol in soil through using a mobile plant–endophyte system. Chemosphere. 182, 194, 2017.
  • 18. YANG L., WANG Y., SONG J., ZHAO W., HE X., CHEN J., XIAO M. Promotion of plant growth and in situ degradation of phenol by an engineered Pseudomonas fluorescens strain in different contaminated environments. Soil Biol. Biochem. 43 (5), 915, 2011.
  • 19. PRAKASH P.K., LOH C.S. 9 - Plant tissue culture for biotechnology, In Plant Biotechnology and Agriculture, edited by Arie Altman and Paul Michael Hasegawa, Academic Press, San Diego, 13, 2012.
  • 20. LI H., CHENG Z. Hoagland nutrient solution promotes the growth of cucumber seedlings under light-emitting diode light. Acta Agricult. Scand. 65 (1), 74, 2015.
  • 21. BERTANI G. Lysogeny at Mid-Twentieth Century: P1, P2, and Other Experimental Systems. J. Bacteriol. 186 (3), 595, 2004.
  • 22. COOKE F.J., SLACK M. 183 - Gram-Negative Coccobacilli, In Infectious Diseases (Fourth Edition), edited by Jonathan Cohen, William G. Powderly and Steven M. Opal, Elsevier, 1611, 2017.
  • 23. VAN ECHELPOEL W., BOETS P., GOETHALS P.L.M. Functional Response (FR) and Relative Growth Rate (RGR) Do Not Show the Known Invasiveness of Lemna minuta (Kunth). PLoS ONE. 11 (11): e0166132, 2016.
  • 24. ZHIVOTOVSKY O.P., KUZOVKINA J.A., SCHULTHESS C.P., MORRIS T., PETTINELLI D., GE M. Hydroponic Screening of Willows (Salix L.) for Lead Tolerance and Accumulation. Internat. J. Phytorem. 13 (1), 75, 2010.
  • 25. KITTIWONGWATTANA C., VUTTIPONGCHAIKIJ S. Effects of nutrient media on vegetative growth of Lemna minor and Ladnoltia punctata in vitro and ex vitro cultivation. Meajo. Int. J. Sci. Technlog. 7, 60, 2013.
  • 26. BIANCONI D., PIETRINI F., MASSACCI A., IANNELLI M.A. Uptake of Cadmium by Lemna minor, a (hyper?-) accumulator plant involved in phytoremediation applications. E3. Web. Conf.; Italy, 1, 2013.
  • 27. KURNIK K., TREDER K., SKORUPA-KŁAPUT M., TRETYN A., TYBURSKI J. Removal of Phenol from Synthetic and Industrial Wastewater by Potato Pulp Peroxidases. Water, Air, Soil Poll. 226 (8), 254, 2015.
  • 28. JEON J., BALDRIAN P., MURUGESAN K., CHANG Y. Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. Microb. Biotechnology. 5 (3), 3182, 2012.
  • 29. CHHABRA G., CHAUDHARY D., SAINGER M., JAIWAL P.K. Genetic transformation of Indian isolate of Lemna minor mediated by Agrobacterium tumefaciens and recovery of transgenic plants. Physiol. Mol. Biol. Plants. 17 (2), 129, 2011.
  • 30. Haney C.H., Samuel B.S., Bush J., Ausubel F.M. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants. 1 (6), 150, 2015

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6c77d671-373c-4827-9371-36333d847db9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.