PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 578 |

Tytuł artykułu

Wpływ ph podłoża hodowlanego oraz glicerolu jako źródła węgla na biosyntezę polimerów ściany komórkowej drożdży Candida utilis i Kluyveromyces fragilis

Treść / Zawartość

Warianty tytułu

EN
The influence of glycerol as a carbon source and ph of cultivation medium on biosynthesis of cell wall polymers of candida utilis and kluyveromyces fragilis yeasts

Języki publikacji

PL

Abstrakty

PL
Celem badań było określenie możliwości wykorzystania glicerolu w hodowli drożdży Candida utilis oraz Kluyveromyces fragilis ukierunkowanej na biosyntezę β-glukanu i/lub mannoprotein tworzących strukturę ściany komórkowej tych grzybów. Preparaty ścian uzyskiwano na drodze autolizy komórek drożdży. Poddawano je następnie frakcjonowaniu w warunkach alkalicznych na poszczególne polisacharydy. Stwierdzono zróżnicowanie zawartości β(1,3)-/β(1,6)-glukanów i mannoprotein w ścianach badanych drożdży, zależne od szczepu, stężenia glicerolu oraz pH podłoży hodowlanych. Istotne zwiększenie zawartości cukrów ogółem i β(1,3)-/β(1,6)-glukanów w ścianie drożdży Candida utilis ATTC 9950 odnotowano po hodowli w podłożu o pH 4,0 zawierającym 2% glicerolu. W preparatach ścian omawianego szczepu stwierdzono wówczas około 75% cukrów ogółem i około 53% β(1,3)-/(1,6)-glukanu. Drożdże Kluyveromyces fragilis R11 okazały się lepszym źródłem mannoprotein. W preparatach komórek z podłoży o pH 7, zawierających 3 lub 5% glicerolu, odnotowano około 30,5% tych polimerów.
EN
The structure of yeast cell wall is mainly composed of polymers such as β-glucans and α-mannan (present as mannoprotein). It is well known that yeast β-glucans and mannoprotein exhibit a range of bioactive properties in humans and animals, like anti-toxic, anti-mutagenic, anticancerous and anti-oxidative activity, stimulation of immunological response as well as antibacterial properties. The content of β-glucans and mannoprotein in cell wall of unicellular fungi is connected to growth conditions. This work reports on the infl uence of glycerol as a carbon source and pH of the medium on structural cell wall polymers (β-glucan and mannoprotein) biosynthesis of Candida utilis ATTC 9950 and Kluyveromyces fragilis R11. The experimental cultivations of investigated yeast strains were performed in control YPD medium and in a model mediums where glucose was replaced with glycerol in the amount of 2, 3 and 5% (w/v). All mediums were prepared in three pH variants i.e. 4.0, 5.0 and 7.0. The preparations of cell walls of yeasts from the experimental cultivations were achieved via 24-h cell autolysis. The obtained cell wall preparations were subjected to fractionation on particular structural polysaccharides, i.e. β(1,3)-glucan, β(1,6)-glucan and mannoproteiny, by extraction in alkaline conditions. The content of reducing carbohydrates (as glucose) was analyzed using colorimetric method (λ = 540 nm) with 3,5-dinitrosalicylic acid after hydrolysis of particular fractions in acidic conditions. Results of the investigation demonstrated that cultivation of Candida utilis ATTC 9950 and Kluyveromyces fragilis R11 on glicerol, low-cost substrates from biodiesel production, may intensify the biosynthesis of cell wall polymers. The tendency depended on cultivation medium and strain. For yeast of genus Candida the portion of polysaccharides in total, as well as β(1,3)/(1,6)-glucan content were highest after cultivation on medium containing 2% of glycerol and pH 4.0. It was 75% and 53% respectively. Depending on growth conditions, the Candida utilis ATTC 9950 strain contained from 2 to 4 times more β(1,3)/(1,6)-glucan in cell wall structure comparing with Kluyveromyces fragilis yeasts. At the same time, Kluyveromyces fragilis R11 strain was more effi cient source of mannoprotein comparing with Candida yeast. Preparations of cell walls of Kluyveromyces fragilis after yeast cultivation in mediums with 3 and 5% of glycerol pH 7.0 contained app. 30.5% of mannoproteins. The results confi rmed that cultivation in medium with glycerol as a carbon source contributed to obtaining the biomass of Candida utilis and Kluyveromyces fragilis with increased portion of functional cell wall polymers. Further studies should be oriented towards an optimization of cultivation conditions for effi cient biosynthesis of β-glucans or mannoprotein and to establish their functional properties.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

578

Opis fizyczny

s.3-15,tab.,bibliogr.

Twórcy

  • Katedra Biotechnologii, Mikrobiologii i Oceny Żywności, Wydział Nauk o Żywności, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159c, 02-776 Warszawa
autor
  • Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Warszawa
  • Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Warszawa

Bibliografia

  • Aguilar-Uscanga B., François J.M., 2003. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett. Appl. Microbiol. 37, 268–274.
  • Bohn J.A., BeMiller J.N., 1995. (1→3)-β-D-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr. Polym. 28, 3–14.
  • Bowman S.M., Free S.J., 2006. The structure and synthesis of the fungal cell wall. BioEssays 28, 799–808.
  • Bzducha-Wróbel A., Kieliszek M., Błażejak St., 2013. Chemical composition of the cell wall of probiotic and brewer’s yeast in response to cultivation medium with glycerol as a carbon source. Eur. Food Res. Technol. 237, 489–499.
  • Chen J., Seviour R., 2007. Medicinal importance of fungal β-(1→3),(1→6)-glucans. Mycol. Res. 111(6), 635–652.
  • Da Silva G.P., Mack M., Contiero J., 2009. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27(1), 30–39.
  • Fleet G.H., Manners A.D.J., 1976. Isolation and composition of an alkali-soluble glucan from the cell walls of Saccharomyces cerevisiae. J. Gen. Microbiol. 94(1), 180–192.
  • Ganner A., Stoiber C., Wieder D., Schtzmayr G., 2010. Capability of yeast derivatives to adhere enteropathogenic bacteria and to modulate cells of the innate immune system. J. Microbiol. Methods 83, 168–174.
  • Jalcin S.K., Ozbas Z.Y., 2008. Effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine strains of Saccharomyces cerevisiae from Turkey. Braz. J. Microbiol. 39, 325–332.
  • Kapteyn J.C., Van Den Ende H., Klis F.M., 1999. The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim. Biophys. Acta 1426, 373–383.
  • Kath F., Kulicke W.M .1999. Mild enzymatic isolation of mannan and glucan from yeast Saccharomyces cerevisiae. Die Angewande Macromoleculare Chemie 268, 59–68.
  • Kayingo G., Martins A., Andrie R., Neves L., Lucas C., Wong B. 2009. A permease encoded by STL1 is required for active glycerol uptake by Candida albicans Microbiol. 155, 1547–1557.
  • Kim K.S., Yun H.S., 2006. Production of soluble β-glucan from the cell wall of Saccharomyces cerevisiae. Enzyme. Microb. Technol. 39, 496–500.
  • Klis F.M., Pieternella M., Hellingwerf K., Brul S., 2002. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 26, 239–256.
  • Kogan G., Kocher A., 2007. Role of yeast cell wall polysaccharides in pig nutrition and health protection. Livestock Sci. 109, 161–165.
  • Kopecká M., Gabriel M., Nečas O., Svoboda A., Venkov P.V., 1991. Cell surface structures in osmotically fragile mutants of Saccharomyces cerevisiae. J. Gen. Microbiol. 137, 1263–1270.
  • Križková L., Ďuračková Z., Šandula J., Sasinková V., Krajčovič J., 2001. Antioxidative and Antimutagenic Activity of Yeast Cell Wall Mannans in Vitro. Mut. Res. 497, 213–222.
  • Laroche C., Michaud P., 2007. New development and prospective applications for β(1,3)-glucans. Recent Pat. Biotechnol. 1, 59–73.
  • Lesage G., Bussey H., 2006. Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70(2), 317–343.
  • Lipińska E., Błażejak St., Markowski K., 2010. Possibility of using glycerol from biodiesel production as a source of carbon in mixed culture Candida utilis yeast and acetic acid bacteria. Acta Sci. Polon. – Biotechnol. 9(3), 3– 4.
  • Liu X.Y., Wang Q., Ciu S.W., Liu H.Z., 2008. A new isolation method of beta-D-glucans from spent yeast Saccharomyces cerevisiae. Food Hydrocoll. 22, 239–247.
  • Magnelli P., Cipollo J.F., Abeijon C., 2002. A refined method for the determination of Saccharomyces cerevisiae cell wall composition and beta-1,6-glucan fine structure. Anal. Biochem. 301, 136–150.
  • Moraes D.A., Aquaron F., Borzani W., 1996. Influence of the initial glycerol concentration on the specific growth rate of Candida utilis cultivated on a synthetic medium containing glycerol as the main carbon source. Biotechnol. Lett. 18(8), 943–946.
  • Nguyen T.H., Fleet G.H., Rogers P.L., 1998. Composition of the cell walls of several yeast species. Appl. Microbiol. Biotechnol. 50, 206–212.
  • Novák M., Synytsya A., Gedeon O., Slepička P., Procházka V., Synytsya A., Blahovec J., Hejlová A., Čopíková J., 2012. Yeast β(1,3),(1,6)-D-glucan films: preparation and characterization of some structural and physical properties. Carbohyd. Polym. 87, 2496–2504.
  • Orłowski J., Machula K., Janik A., Zdebska E., Palamarczyk G., 2007. Dissecting the role of dolichol in cell wall assembly in the yeast mutants impaired in early glycosylation reactions. Yeast 24, 239–252.
  • Salamon A., Baca E., Zielińska K., Cybulska J., Michałowska D., Baranowski K., 2011. Sposoby zagospodarowania odpadów poprodukcyjnych przemysłu piwowarskiego. ZPPNR 558, 239–251.
  • Smits G.J., Van den Ende H., Klis F.M., 2001. Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology 147, 781–794.
  • Soltanian S., Dhont J., Sorgeloos P., Bossier P., 2007. Influence of different yeast cell wall mutants on performance and protection against pathogenic bacteria (Vibrio campbellii) in gnotobiotically-grown Artemia Fish Shellfish Immunol. 23, 141–153.
  • Suphantharika M., Khunrae P., Thanardkit P., Verduyn C., 2003. Preparation of spent brewer’s yeast b-glucans with a potential application as an immunostimulant for black tiger shrimp, Penaeus monodon. Bioresour. Technol. 88, 55–56.
  • Sutherland F.C., Lages F., Lucas C., Luyten K., Albertyn J., Hohmann S., Prior P.A., Kilian S.G., 1997. Characteristics of Fps1-dependent and -independent glycerol transport in Saccharomyces cerevisiae. J. Bacteriol. 179(24), 7790–7795.
  • Thanardkit P., Khunrae P., Suphantharika M., Verduyn C., 2002. Glucan from spent brewer’s yeast: preparation, analysis and use as a potential immunostimulant in shrimp feed. World J. Microbiol. Biotechnol. 18, 527–539.
  • Yoshida Y., Yokoi W., Ohishi K., Ito M., Naito E., Sawada H., 2005. Effect of the cell wall of Kluyveromyces marxianus YIT 8292 on the plasma cholesterol and fecal sterol excretion in rats fed on a high-cholesterol diet. Biosci. Biotechnol. Biochem. 69(4), 714–723.
  • Zechner-Krpan V., Petravić-Tominac V., Gospodarić I., Sajli L., Daković S., Filipović-Grčić J., 2010. Characterization of ß-Glucans Isolated from Brewer’s Yeast and Dried by Different Methods. Food Technol. Biotechnol. 48(2), 189–197.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6c4cafec-7b7b-471e-a54a-5b8340a4148d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.