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ABSTRACT

A Fractional differential equation is an equation that contains derivatives with an order of
fractional numbers. Same with natural number order differential equations, this type of equation is
divided into linear and nonlinear fractional differential equations. One of the equations that include
nonlinear fractional differential equation is Riccati fractional differential equation (RFDE). Various
methods have been applied to find solutions for fractional differential equations Riccati, one of them is
the Modified Homotopy Perturbation Method (MHPM) which is a modification of the Homotopy
Perturbation Method by Zaid Odibat and Shaher Momani. In this study, the MHPM was used to find
solutions for fractional differential equations Riccati, which were then used to analyze the convergence
of the function sequences of the solution. The result shows us that the order sequence of Riccati
fractional differential equation which converges to a number causes the solution function sequence of
Riccati fractional differential equation will converge to the function of the solution of Riccati fractional
differential equation with the order of this number.
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1. INTRODUCTION

Fractional Calculus is a branch of mathematics that investigates the properties of
derivatives and integrals with order of rational numbers. In particular, these disciplines include
the ideas and methods of solving differential equations involving fractional derivatives of
arbitrary functions that called fractional differential equations.

According to Loverro [28], it was mentioned that the concept of fractional calculus first
appeared in L’Hopital's letter to Leibniz in 1695 which questioned how the derivative form of
a function with an order of rational numbers. Since then, fractional calculus has continued to
be developed by many famous mathematicians, such as Liouville, Grunwald, Riemann, Euler,
Lagrange, Heaviside, Fourier, Abel, and others [22].

The difficulties of fractional calculus especially fractional derivatives make this field
unpopular. One possible explanation of this unpopularity is that there are many non-equivalent
definitions of fractional derivatives [36]. However, in recent years, fractional calculus has
begun to steal attention.

This is indicated by the number of models, especially interdisciplinary applications that
are easily modeled using help from fractional derivatives. Some applications, namely nonlinear
oscillations of earthquakes [17], fluid-dynamic flow models [16], viscoelasticity [24, 25, 31],
dynamic system control theory [5, 26], electricity networks [12,32], opportunities and statistics
[27], Finance [15, 38], electrochemical corrosion [11, 30], optics and signal processing [21, 35,
39], control engineering [3,10], biosciences [29], fluid mechanics [23], electrochemistry [34],
diffusion processes [13, 19], Optimal control [7,8], hydrologic model [6], pharmacokinetics
[37].

Various methods have been developed to get a solution of fractional differential equations
so that it is easy to apply. He [17, 18] using Homotopy Perturbation Method (HPM) to solve
nonlinear fractional differential equation, Ghazanfari & Sepahvandzadeh [14] solved fractional
Bratu-Type equation using Adomian Decomposition Method (ADM), Jafari et al [20] used
Laplace Decompotition Method for solving linear and nonlinear fractional diffusion-wave
equation, Abbasbandy [1] compared HPM and ADM for solving quadratic Riccati differential
equation, Das et al [9] using Homotopy Analysis Method (HAM) to solve nonlinear fractional
differential equation, Odibat & Momani [33] using Modified Homotopy Perturbation Method
(MHPM) which is a modification from HPM to solve fractional Riccati differential equation.

Bai et al [4] solved the fractional differential equation using a monotone iterative method.
Bekir et al [2] used the first integral method to determine the exact solution of the nonlinear
fractional differential equation.

Odibat and Momani [33] have reviewed numerical and analytical solutions for Riccati
fractional differential equations (RFDE) with the coefficient are a constant function using
MHPM. The modification of the method shows rapidly convergences from the series of the
solution.

The result showed the solution values for the order of fractional numbers. However, the
study did not examine the sequences function of the solution convergences. In this study, the
MHPM method is used to determine the solution of Riccati fractional differential equations
with one of the coefficients in the form of a polynomial function and equipped with a study of
the convergences of RFDE’s solution function with an order sequence converging towards a
number to the function of RFDE’s solution with the order is these number.
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2. MATERIALS AND METHODS

The Riccati fractional differential equation that used in this study has the following
general forms:
d“u

o

= A(t) + B(t)u + C(t)u?, t>0, m-l<a<m,

with the initial condition y’(0)=c; j=0,1...,m-1.
A(t),B(t) and C(t) are the function in t which is the coefficient, c, is an arbitrary constant and
«a is a fractional derivative order.

2. 1. Modified Homotopy Perturbation Method

In this section, we discuss the Modified Homotopy Perturbation Method to find the
solutions of Riccati fractional differential equation. This method involves fractional integrals
and Caputo fractional derivatives with the definition as follows:

Definition 1. Fractional Integral [28]

The fractional integral defined by Riemann-Liouville is a popular definition in fractional
calculus, the definition is as follows:
Suppose « is real number, fractional integral with « as an order of function f(x) is

Jf(x) = D“f(x):%i(x—t)“f(t)dt, with 0.

The fractional integral with an « orde of simple function in the form of f(x)=x"
according to Riemann-Liouville is expressed in the form of multiplying Gamma functions with

polynomial functions which can be expressed in the following theorem:
Theorem 2 [21]

g LMY

= for >0, m>-1, x>0.
I'(m+a+1l)

Proof:

For x,=0 and f(x)=x" obtained
3£ (x) = D X" = —— ] (x—t)*“t"dlt
' I'a)o ’

so that it can be calculated D™ *x™, where ¢ >0, m> -1 as follows
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1 1 x t
D™ =——[(x—t)*"t"dt =——— [ (L— —)* x>t dt.
[Ka)g( ) IKa)g( X)

Suppose that t = xu then obtained dt=xdu. If t=0 then u=0 and if t=x then u=1,
so that D “x™ became

1
D“x" = Lj (L—u)* " x*H(xu)"xdu =

1
Xmﬂl.[(l— u)a—lumdu
0

I(ax)o ')
Ll _ r(m+l) .,
_F(a)x ﬂ(m+1'a)_r(m+a+1)x '

Definition 3. Caputo Fractional Derivative [22]

Suppose « is a real number, and n—-1<a<n, n is a natural number, fractional
derivative order o of f(x) with respectto t is

D f (X) = 3™ f (x) = ﬁi(x—t)”“l £ (1)t

Modified Homotopy Perturbation Method
Suppose that the nonlinear fractional differential equation is given as follows:

Du(t)+L@u()+N@u@)=r(), t>0, m-l<a<m, @

where L is the linear operator, N is the nonlinear operator, r is an analytic function, and D*
is Caputo fractional derivative order « , with initial condition

u“()=c, k=012...,m-1. 2)

Then, based on MHPM, it can obtain the homotopy equation for (1) as follows
u™ +L(u)-r(t) = p[u™ —N(u)-D"u], pe[0,1] (3)
or u™ —r(t) = p[u™ - L(u) - N(u)-D"u], p e[0,1] (4)

Basic assumptions for the solution of the equation (3) and (4) can be formed in power
series p, thatis

U=U,+ pu, + p°U, + pu, +--- (5)

by substituting (5) to (4), it can be obtained
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U™ —r(®)+ pu,™ + pu,™ + p’u,™ +---
= pu,™ —L(u,) — N(u,) — D“U ]+ p*[u,™ — L(u,) =N (u,) — D“u,] +
ps[uz(m) _L(uz)_ N(uz)_Dau2]+"" (6)

By comparing the identical power of p in both sections on (6), then obtained

d™u
9 = r t y K 0 =C ’

dtm () u ( ) k

d", d"u "

dtml = dtmo — Lo (ug) = Ny (ug) — D (Uy), Uk(o) =0,

d", d"u "

dtm2 = dtml - Ll(uO’ul) - Nl(uO'ul) - D (u1)1 uk (O) = 01

ddt:3 = ddtlnjq2 — L, (Ug, Uy, uy) — N, (Ug, Uy, uy) — D¥(Uy), u“(0) =0, (7)

where L, L, L,,... and Ny, N;,N,,... fulfill the equation:
L(u, + pu, + p°u, +...) = Ly (Uy) + pLy Uy, Uy ) + P2L, (Ug, Uy, Uy ) +. ..
N (U, + pu, + p°U, +...) = Ny (Ug) + PN, (Uy, U,) + p°N, (Uy, Uy, Uy) +..,

Then, by integrating the (7) obtained u,,u,,u,,... .
Determine p =1 for (5) then obtained the approach solution using MHPM, as follows:

() =X, ) ®)

3. RESULT
3. 1. Solution of Fractional Differential Equations Riccati (RFDE) a order

The Riccati fractional differential equation is given as follows:

d u:t”+u(t)—u2(t), t>0, O<a<l 9)

a
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with initial condition u(0) =0. 20)
Based on MHPM, homotopy equation for (9) is
u'—t" = p[u'+u—u®-D"u]. (11)

By substituting (5) and initial condition (10) to (11), obtained

u,'=t", u,(0)=0
u,'=U,"+U, —u,” — DU, , u,(0)=0
u,'=u, +u, —2u,u, — D%, , u,(0)=0

U,'=U,"+U, —2uu, —u,° —D%U,, , U,(0)=0

then, by integrating (12) it can obtained u,,u,,u,,... that are

tn+1
u, = ,
° n+l

y - tn+l . tn+2 B t2n+3 B F(n+2)tn—a+2
Y n+l (n+)(n+2) (n+1)*@2n+3) I'(n—a+3)(n+1) '

u = tn+1 . 2tn+2 ~ tn+3 ~ 3t2n+3 ~ (5n+8)t2n+4
" n+l (n+)(+2) (h+)(+2)(n+3) (N+D1)*@2n+3) (n+1)*(2n+3)(n+2)(2n+4)

. 2t _2r(n+r 2r(n4 3t
(n+1)°@2n+3)(3n+5) I'(n—a+3)(n+1) I'(n—a+4)(n+D)(n+2)

N 27 (n+ 2t N @2n+4y>o AL )|
I'(n—a+2)(n+1)°’@n-a+3) I'Cn—a+5)n+D*(2n+3) I'(n—2a+4)(n+1)
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Therefore, the solution for (9) is
u(t) =uy(t) +u, () +u,(t)+...

_ 3tn+l . 3tn+2 N tn+3 B 4t2n+3 B (5n +8)t2n+4
n+l1 (n+)(n+2) (+DN+2)(n+3) (+D*(2n+3) (+D*(2n+3)(n+2)(2n+4)

. 263 _ 3r(n+tme? 27 (n+3)t"*
(n+1)2n+3)(3n+5) I'(n—a+3)(n+1) I'(n—a+4)(n+D(n+2)

. 2 (n+2)t> e N @2n+4)t> o . (n+2)t" 2
Ir(n—a+2)(n+1)°’@2n-a+3) I'Cn-a+5)(n+1)°@2n+3) I'(n-2a+4)(n+1)

+...(13)

where u(t) is the general form of the RFDE (9) solution.

3. 2. Convergences Analysis of the solution function sequences of RFDE «; order with
Alt)=t

: . . . [
Next, we will analyze the convergences of solution function sequences with ¢, =1
i+

and A(t) =t . By substitutinga =, and n=1 to (9) then obtained

d (ﬁju

with initial condition u(0) = 0.
Based on (13), the solution function sequences of RFDE (14) denoted by g, (t) is

=t"+u(t)-u’(t), t>0, i=123..., O<a<l (14)

3L 4t
g®:§ﬁ+1ﬁ+14531ﬁ_13ﬁ+ 1ﬁ 3t 2t

2 2 24 10 360 160 F(“_-Ij r(s-_'}
1+1 i+1

i i 2i

5— 6——— -
t i+1 6t i+1 t i+1
- —+ —+ > +....
ris-—|s--| rf7-‘| r|s-“
1+1 i+1 1+1 i+1

If written in detail, obtained

+

5 7 9 11
2 2 2 2
gl(t)=§t2+1t3+it“—gt5— 18 o, Lp 872 s & 18
2 2 24 10 360 160 5z 105Jz 27 7z 346571
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) 0 9 B 9
3, 1, 1., 17, 13 1 81J§tsr(3j 81@31{3) 27@”(3]
g, =t +=t?+ =t -t -t ——t* - —

+
2 2 24 10 360 160 567 2807 104~

2713
58240 " N
7 801“()

® (2
2187+/3t F(sj 8

3

S 13 B 3 vorg
32\/§t41“(4j 256+/2t 4 r(4j 32./2t 4 r(4j

gs(t)=§t2+1t3+it4—£t5— 18 e, Lp - +
2 2 24 10 360 160 157 5857 857
21
2 (3
40962t 1| © H
V2 (4} 8t2

+ +
696157 157

and so on for g, (t), 9. (t), g4 (t),... .

i+1
with & =1and A(t) =t . By substituting =1 and n=1to (13), obtained the solution u(t) then
in this case it is called g(t),

Because (¢ ) = (Lj converges to =1, then we have to find the solution of the RFDE

t2 2 7tt 33t° 13t° ¢t
git) =—+—+—- — + +
2 6 24 20 360 160

This part will be shown the sequences of solution function g, (t) converges to solution
function g(t).

5 1 it
i+1 i+1
limg, (t) =lim Spilp sty e B 1 7 27
i e 2 2 24 10 360 160 F(4_'I)F(5_'Ij
1+1 i+1
5t 6 a2
t i+l 6t i+l t i+l
+ +

(o) () o)
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i+1 i+1
=gt2+%t3+2it4—£t5—£t6+it8+lim— ot —— 2t _
4 10 360 160 i F(“‘-Ij r(s—,'j
1+1 1+1
5 i ot ]
t i+l 6t i+l t i+l

R CA R A A

=§t2+1t3+it4—£t5—13t6+lts— 3 t3‘1——2 t*

22 24 10 360 160 I(4-1)  I(5-1)

1 5-1 6 6-1 1 4-2
t t t
TG (-1 (-2

Splpy e M B e 3 o 2 s,

2 2 24 10 360 160 I(3) 1I(4) 4r(2) 1I(6)

=§t2+1t3+it4—Ets—£t6+it8—§t2—§t3+1t4+it5+3t2+...
2 2 24 10 360 160 2 3 4 120 2

+ t2+...

1
r(3)

£ 7t 33 13t

—— - +
2 6 24 20 360 160

+...=0(1).

It is obtained that lim g, (t) = g(t), so the sequences of solution function RFDE (14)

converges to the solution function of RFDE with o =1 and A(t) =t .

The sequences of solution function RFDE (14) can be described in graphical form which
is shown in Figure 1.a and Figure 1.b as follows:
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Based on Figure 1.a and 1.b it can be seen that graphic of the sequences of solution

function RFDE (ai):('l_lj order heading to the graph function solution RFDE « =1order
i+

which is shown in black. In other words, the sequences of solution function RFDE (14)

converges to the solution function RFDE with a = lim_'—l =land n=1.
120 | 4

3. 3. Convergences Analysis of the solution function sequences of RFDE a; order with
A(t) = t?

: . : . [
Next, we will analyze the convergences of solution function sequences with ¢, =1
i+

and A(t) =t*. By substitutinga = «; and n=2 to (9) then obtained

5,

with initial condition u(0) = 0.
Based on (13), the solution function sequences of RFDE (15)denoted by h,(t) is

=t"+u(t)-u*t), t>0, i=123..., O<a<l (15)

b 5 i

i+1 i+l

hi(t):t3+%t4+it5—it7—1izt8+227 R _ & .
60 63 079 F(S_-I j F(B—_ i j

1+1 1+1

7 g 2
4t i+1 80t i+1 2t i+1
+ + + +....

el o) o)

If written in detail, obtained

! 9 13 15
hl(t)=t3+1t4+it5—it7— 1 o, 2 32t 1282 64t = 4096t®
4 60 63 112 2079 35z 945 7 585z 4054057

) B 92 ¥ 9
243./3t° r(j 243./3t° r(j 2733 r(j
h(t)—t3+1t“+it5—it7— Lo, 2 g 3)_ 3 3
() =

4 60 63 112 2079 280 18207 2667
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s 81t3
6086087 4401 ( zj

Z (2
6561/3t ® r(3] 1

B 3 vora L
256+/2t 4 r(4j 2048+/2t 4 r(4j 512/2t r(4j

ha(t)=t3+1t4+it5—it7— L, 2 o +
4 60 63 112 2079 1957 99457 33757

29

2 (3

ar = U
5242884/2t r(4) ot

+ +... .
30282525 105/

and so on for h, (t), h, (t), hy (t).... .
Because (¢ ) = (LJ converges to =1, then we have to find the solution of the RFDE
i+
with o =1and A(t) =t*. By substituting =1 and n=2to (13), obtained the solution u(t)

then in this case it is called h(t),
1 1

h(t) =t* + —t* + —
12 60

ts—lte—it7—it8+it“+... .
9 21 112 2079

This part will be shown the sequences of solution function h,(t) converges to solution
function h(t).

L 51
i+1 i+1
limh, (t) = lim hi(t):t3+%t4+it5—i7—liz8+227 n__ O™ a =

i+1 i+1

2i

71 g 5-=
4t i+1 80t i+1 2t i+1
+ h —+ —+ T +
arfa-t|l7-| rlo--| rle--<-
1+1 1+1 1+1 1+1
1, 1. 4. 1 2 ot i 4
=P+ttt —tT P ——t" + lim< - — :
4 60 63 112 2079 i—>o0 ]ﬁ(S-_Ij ]ﬁ(ﬁ-—_lj
1+1 1+1
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2i

71 g 5-—

4t i+1 80t i+1 2t i+1
+ . — 4+ — 4+ T +
3r(4_.'j(7__'j r(g_,'j r(e__j

1+1 1+1 1+1 1+1

+ _it7_ 1 18 2 i 6 1 4
60 63 112 2079 I (5-1)  I(6-1)

4 7-1 80 8-1 2 5-2
t t t ..
sr(a-n(-1) r(e-1 re-2)

t t
4 "60 63 112 2079 (4 (5 187(3) @ I(8)

—2 t*+
r(4)
:t3+3t4+it5—it7—it8+it“—t3—lt4+1t6+it7+1t3+...
4 60 63 112 2079 6 9 63 3

ettt L Lo e 2 m pg.
12" T60 9 21 112 ' 2079

It is obtained that limh,(t) =h(t), so the sequences of solution function RFDE (15)

converges to the solution function of RFDE with o =1 and A(t) =t°.

The sequences of solution function RFDE (15) can be described in graphical form which
Is shown in Figure 2.

Based on Figure 2 it can be seen that graphic of the sequences of solution function RFDE

(o) =(LJ order heading to the graph function solution RFDE « =1order which is shown
i+

in black. In other words, the sequences of solution function RFDE (15) converges to the solution

function RFDE with a = lim_'—l =land n=2.
11— | +
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Figure 2. Graphic of RFDE solution with (¢ ) = (Llj and A(t) =t°
i+

4. CONCLUSION

The Modified Homotopy Perturbation Method can be used to find a solution of RFDE
and if the sequence of order «; converges to a number called o then the sequence of solution

function RFDE ¢, order will converge to the RFDE’s solution function a order.
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