EN
Cell growth platforms with biofunctionalized surfaces were fabricated to control and direct HUCB-NSC fate decisions. Two different nano/micro techniques: microcontact printing and piezoelectric non-contact spotting were used to allocate biomolecules (poly-Llysine and fi bronectin) on cell-repellent, non adhesive substrate. Such methods allow controlling the spatial distribution and content of the biomolecules on the microarray and governing cell adhesion in unspecifi c (electrostatic) or specifi c (receptor-mediated) manner. Patterning of biomolecules in different conditions on the single growth platforms enables to infl uence and compare stem cells developmental processes (proliferation /differentiation) at variable environments. To refl ect/mimic stem cell niche we applied functional domains containing ECM protein spotted together with the small signaling molecules (notch, wnt, shh). Such approach enable directing of neural stem cell developmental program by inducing intracellular molecular pathways leading to either self renewing- or differentiating- (neuronal or astrocytic) state. We characterized active biofunctionalized domains on fabricated microarrays by applying two methods of surface analysis: ellipsometry measurement and surface plasmon resonance system. This type of bioengineered cell growth platforms can be used for screening the mechanisms governing neural stem cell fate decisions and adverse reactions upon environmental stimuli. Grant No 0141/B/ P01/2008/35.