PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 20 | 5 |
Tytuł artykułu

Role of L-arginine against lead toxicity in liver of rats with different resistance to hypoxia

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to determine if the inhibition or stimulation of NO synthesis modulates liver damage induced by chronic lead intoxication. Lead nitrate (3.6 mg/kg, per os) was administered one time a day for 30 days to male Wistar rats with low and high resistance to hypoxia treated simultaneously with L-arginine (600 mg/kg, i.p.) or Nω-nitro-L-arginine (L-NNA, 35 mg/kg, i.p.) 30 min. before lead exposure. L-Arginine treatment protected the liver of rats with low resistance to hypoxia partially by reducing lipid hydroperoxides level, the thiobarbituric acid reactive substances (TBARS) concentration, and altering the antioxidant defense system depletion induced by lead intoxication. Treatment of lead-exposed highly resistant rats by L-arginine did not reduce the TBARS level, but lowered the lipid hydroperoxides concentration. The increased glutathione antioxidant defense system in liver of L-NNA-treated rats reflects the antioxidant action of L-NNA for this animal group.
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
20
Numer
5
Opis fizyczny
1319-1325,fig.,ref.
Twórcy
autor
  • Department of Animal Physiology, Institute of Biology and Environmental Protection, Pomeranian University, Arciszewskiego 22B, 76-200 Słupsk, Poland
  • Department of Animal Physiology, Institute of Biology and Environmental Protection, Pomeranian University, Arciszewskiego 22B, 76-200 Słupsk, Poland
Bibliografia
  • 1. VALKO M., MORRIS H., CRONIN M. T. Metals, toxicity and oxidative stress. Curr. Med. Chem. 12, (10), 1161, 2005.
  • 2. PATRICK L. Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Altern. Med. Rev. 11, (2), 114, 2006.
  • 3. FLORA S. J., FLORA G., SAXENA G., MISHRA M. Arsenic and lead induced free radical generation and their reversibility following chelation. Cell Mol. Biol. 53, (1), 26, 2007.
  • 4. FLORA S. J., MITTAL M., MEHTA A. Heavy metal induced oxidative stress and its possible reversal by chelation therapy. Indian J. Med. Res. 128, (4), 501, 2008.
  • 5. PACHAURI V., SAXENA G., MEHTA A., MISHRA D., FLORA S. J. Combinational chelation therapy abrogates lead-induced neurodegeneration in rats. Toxicol. Appl. Pharmacol. 240, (2), 255, 2009.
  • 6. KURHALYUK N. State of mitochondrial respiration and calcium capacity in livers of rats with different resistance to hypoxia after injections of L-arginine. Fiziol. Zh. 47, (3), 64, 2001 [In Ukrainian].
  • 7. LUKYANOVA L. D., DUDCHENKO A. M., TSYBINA T. A., GERMANOVA E. L., TKACHUK E. N., ERENBURG I. V. Effect of intermittent normobaric hypoxia on kinetic properties of mitochondrial enzymes. Bull. Exp. Biol. Med. 144, (6), 795, 2007 [In Russian].
  • 8. MIRONOVA G. D., SHIGAEVA M. I., GRITSENKO E. N., MURZAEVA S. V., GORBACHEVA O. S., GERMANOVA E. L., LUKYANOVA L. D. Functioning of the mitochondrial ATP-dependent potassium channel in rats varying in their resistance to hypoxia. Involvement of the channel in the process of animal's adaptation to hypoxia. J. Bioenerg. Biomembr. 42, (6), 473, 2010.
  • 9. LUKYANOVA L. D., DUDCHENKO A. M. Parameters of adenylate pool as predictors of energy metabolism disturbances in hepatocytes during hypoxia. Bull. Exp. Biol. Med. 136, (1), 34, 2003 [In Russian].
  • 10. SHARAPOV V. I., GREK O. R. Activity of liver monooxygenase system in rats with low and high resistance to hypoxia. Exp. Biol. Med. 122, (9), 291, 1996 [In Russian].
  • 11. GREK O. R., GICHEV I. U. P., GUSEVA E. O., SHARAPOV V. I. Biotransformation of xenobiotics in the liver of rats with different resistance to hypoxia during exposure to cold. Exp. Biol. Med. 126, (12), 631, 1998 [In Russian].
  • 12. BAYANOV A. A., BRUNT A. R. Role of hypoxia and constitutionally different resistance to hypoxia/stress as the determiners of individual profile of cytochrome P450 isozyme activity. Gen. Pharmacol. 33, (4), 355, 1999.
  • 13. KOWALCZYK E., KOPFF A., KOPFF M., FIJAŁKOWSKI P., BŁASZCZYK J. Nitric oxide – oxidant or antioxidant? Wiad. Lek. 58, (9-10), 540, 2005 [In Polish].
  • 14. TOROK J. Participation of nitric oxide in different models of experimental hypertension. Physiol. Res. 57, (6), 813, 2008.
  • 15. FORSTERMANN U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch. 459, (6), 923, 2010.
  • 16. NOSSAMAN V. E., NOSSAMAN B. D., KADOWITZ P. J. Nitrates and nitrites in the treatment of ischemic cardiac disease. Cardiol. Rev. 18, (4), 190, 2010.
  • 17. KURHALYUK N., TKACHENKO H. L-arginine modulates mitochondrial function in rat liver during physical training. Bull. Vet. Inst. Puławy 51, 641, 2007.
  • 18. TKACHENKO H., KURHALYUK N., KHABROVSKA L., KAMIŃSKI P. Effect of L-arginine on lead induced oxidative stress in the blood of rats with different resistance to hypoxia. Pol. J. Food Nutr. Sci. 57, ( 3), 387, 2007.
  • 19. KAMYSHNIKOV V. S. Reference book on clinic and biochemical researches and laboratory diagnostics, MEDpressuniform: Moscow, 2004 [In Russian].
  • 20. BRADFORD M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248, 1976.
  • 21. KOSTIUK V. A., POTAPOVICH A. I., KOVALEVA ZH. V. A simple and sensitive method of determination of superoxide dismutase activity based on the reaction of quercetine oxidation. Vopr. Med. Khim. 36, (2), 88, 1990 [In Russian].
  • 22. KOROLIUK M. A., IVANOVA L. I., MAJOROVA I. G., TOKAREV V. E. A method of determining catalase activity. Lab. Delo 1, 16, 1988 [In Russian].
  • 23. GLATZLE D., VUILLEUMIER J. P., WEBER F., DECKER K. Glutathione reductase test with whole blood, a convenient procedure for the assessment of the riboflavin status in human. Experientia 30, 665, 1974.
  • 24. MOIN V. M. A simple and specific method for determining glutathione peroxidase activity in erythrocytes. Lab. Delo 12, 724, 1986 [In Russian].
  • 25. ZAR J. H. Biostatistical Analysis. Fourth ed. Prentice-Hall, Inc., Englewood Cliffs, N.J, 1999.
  • 26. YIIN S. J., LIN T. H. Lead-catalyzed peroxidation of essential unsaturated fatty acid. Biol. Trace Elem. Res. 50, 167, 1995.
  • 27. PATRA R. C., SWARUP D., DWIVEDI S. K. Antioxidant effects of α-tocopherol, ascorbic acid and L-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. Toxicology 162, 81, 2001.
  • 28. RUBBO H., TROSTCHANSKY A., O'DONNELL V. B. Peroxynitrite-mediated lipid oxidation and nitration: mechanisms and consequences. Arch. Biochem. Biophys. 484, (2), 167, 2009.
  • 29. JONES S. M., THURMAN R. G. L-Arginine minimizes reperfusion injury in a low flow, reflow model of liver perfusion. Hepatology 24, 163, 1996.
  • 30. KOBAYASHI H., NONAMI T., KUROKAWA T., TAKEUCHI Y., HARADA A., NAKAO A., TAKAGI H. Role of endogenous nitric oxide in ischemia-reperfusion injury in rat liver. J. Surg. Res. 59, 772, 1995.
  • 31. WANG G. S., LIU G. T. Role of nitric oxide in immunological liver damage in mice. Biochem. Pharmacol. 49, 1277, 1995.
  • 32. RUBBO H., O'DONNELL V. Nitric oxide, peroxynitrite and lipoxygenase in atherogenesis: mechanistic insights. Toxicology 208, (2), 305, 2005.
  • 33. FERRER-SUETA G., RADI R. Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem. Biol. 4, (3), 161, 2009.
  • 34. GARCIA-LESTON J., MENDEZ J., PASARO E., LAFFON B. Genotoxic effects of lead: an updated review. Environ. Int. 36, (6), 623, 2010.
  • 35. MATES J. M. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153, 83, 2000.
  • 36. BENOV L., FRIDOVICH I. Growth in iron-enriched medium partially compensates E. coli for the lack of Mn and Fe SOD. J. Biol. Chem. 273, 10313, 1998.
  • 37. HUNT C., SIM J. E., SULLIVAN S. J., FEATHERSTONE T., GOLDEN W., KAPP-HERR C. V., HOCK R. A., GOMEZ R. A., PARSIAN A. J., SPITZ D. R. Genomic instability and catalase gene amplification induced by chronic exposure to oxidative stress. Cancer Res. 58, 3986, 1998.
  • 38. DIAZ VIVANCOS P., WOLFF T., MARKOVIC J., PALLARDO F. V., FOYER C. H. A nuclear glutathione cycle within the cell cycle. Biochem J. 431, (2), 169, 2010.
  • 39. PANDYA C. D., PILLAI P. P., GUPTA S. S. Lead and cadmium co-exposure mediated toxic insults on hepatic steroid metabolism and antioxidant system of adult male rats. Biol. Trace Elem. Res. 134, (3), 307, 2010.
  • 40. VERSTRAETEN S. V., AIMO L., OTEIZA P. I. Aluminium and lead: molecular mechanisms of brain toxicity. Arch. Toxicol. 82, (11), 789, 2008.
  • 41. SANDERS T., LIU Y., BUCHNER V., TCHOUNWOU P. B. Neurotoxic effects and biomarkers of lead exposure: a review. Rev. Environ. Health 24, (1), 15, 2009
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-6ae1ac0e-4537-4c3a-8064-dfb6d765f90f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.