PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 1 |

Tytuł artykułu

Nutrients and heavy metals in biochar produced by sewage sludge pyrolysis: its application in soil amendment

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The production of sewage sludge has been sharply increasing by municipal sludge treatment plants in China. Sewage sludge is a difficult waste to manage not only due to the high quantities produced but also due to its high concentration of heavy metals and pathogens. The pyrolytic conversion of sewage sludge to biochar and then applied to the land is a sustainable management potion. Therefore, the aim of this work is to evaluate the characteristics of nutrients and heavy metals in biochar from sewage sludge pyrolysis, and pot experiments were carried out with different treatments consisting of infertile and contaminated soils. The results showed that the content of major plant nutrients (N, P, K) in sewage sludge biochar meets agricultural requirements. The concentrations of heavy metals (Cu, Pb, Zn, Cd, and Cr) were evidently increased in biochar, but those of available heavy metals were decreased. The sewage sludge biochar can improve soil fertility and enhance plant growth while not increasing plant uptake of heavy metals, and remedied contaminated soil by reducing the plant availability of heavy metals.

Wydawca

-

Rocznik

Tom

23

Numer

1

Opis fizyczny

p.271-275,ref.

Twórcy

autor
  • State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, P.R.China
autor
  • Geography and Tourism Department, Guizhou Normal College, Guiyang 550018, P.R.China
autor
  • Geography and Tourism Department, Guizhou Normal College, Guiyang 550018, P.R.China

Bibliografia

  • 1. WANG M.J. Land application of sewage sludge in China. Sci. Total Environ. 197, 149, 1997.
  • 2. FYTILI D., ZABANIOTOU A. Utilization of sewage sludge in EU application of old and new methods-a review. Renew. Sust. Energ. Rev. 12, (1), 116, 2008.
  • 3. MCBRIDE M. Toxic metals in sewage sludge-amended soils: has promotion of beneficial use discounted the risks?. Adv. Environ. Res. 8, (1), 5, 2003.
  • 4. PRITCHARD D.L., PENNEY N., MCLAUGHLIN M.J., RIGBY H., SCHWARZ K. Land application of sewage sludge (biosolids) in Australia: risks to the environment and food crops. Water Sci. Technol. 62, (1), 48, 2010.
  • 5. KISTLER R.C., WIDMER F., BRUNNER P.H. Behavior of chromium, nickel, copper, zinc, cadmium, mercury, and lead during the pyrolysis of sewage sludge. Environ. Sci. Technol. 21, (7), 704, 1987.
  • 6. KARAYILDIRIM T., YANIK J., YUKSEL M., BOCKHORN H. Characterisation of products from pyrolysis of waste sludges. Fuel. 85, (10), 1498, 2006.
  • 7. BAGREEV A., BANDOSZ T. J. Efficient hydrogen sulfide adsorbents obtained by pyrolysis of sewage sludge derived fertilizer modified with spent mineral oil. Environ. Sci. Technol. 38, (1), 345, 2004.
  • 8. RIO S., FAUR-BRASQUET C., LE-COQ L., LECLOIREC P. Structure characterization and adsorption properties of pyrolyzed sewage sludge. Environ. Sci. Technol. 39, (11), 4249, 2005.
  • 9. LOU R., WU S.B., LV G.J., YANG Q. Energy and resource utilization of deinking sludge pyrolysis. Appl Energ. 90, (1), 46, 2012.
  • 10. GASKIN J.W., STEINER C., HARRIS K., DAS K.C., BIBENS B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. Asabe. 51, (6), 2061, 2008.
  • 11. AGRAFIOTI E., BOURAS G., KALDERIS D., DIAMADOPOULOS E. Biochar production by sewage sludge pyrolysis. J Anal Appl Pyrol. 101, 72, 2013.
  • 12. SINGH S.P., TACK F.M., VERLOO M.G. Heavy metal fractionation and extractability in dredged sediment derived surface soils. Water Air Soil Pollut. 102, (3-4), 313, 1998.
  • 13. LU R.K. Method of Soil Agrochemical Analysis. Beijing: Chinese Agricultural Science and Technology Press, China, 2000.
  • 14. SHINOGI Y., YOSHIDA H., KOIZUMI T., YAMAOKA M., SAITO T. Basic characteristics of low-temperature carbon products from waste sludge. Adv. Environ. Res. 7, (3), 661, 2003.
  • 15. CABALLERO J.A., FRONT R., MARCILLA A., CONESA J.A. Characterization of sewage sludges by primary and secondary pyrolysis. J. Anal. Appl. Pyrol. 40, 433, 1997.
  • 16. HOSSAIN M. K., STREZOV V., CHAN K.Y., ZIOLKOWSKI A., NELSON P.E. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manage., 92, (1), 223, 2011.
  • 17. FUENTES A., LLORENS M., SAEZ J., AGUILAR M.I., ORTUNO J.F., MESEGUER V.F. Phytotoxicity and heavy metals speciation of stabilised sewage sludges. J. Hazard. Mater. 108, (3),161, 2004.
  • 18. ZHANG S.Q., ZHOU J.Z., LI J.Y., WANG R.F., YANG Z.F., HUO B.Y., LI P. Simulation on speciation transformation of heavy metals in the sewage sludge during pyrolysis. Journal of China University of Mining & Technology. 41, 959, 2012.
  • 19. CHAN K.Y., XU Z. Biochar: nutrient properties and their enhancement. Biochar for environmental management: science and technology. Earthscan, London: 67-84, 2009.
  • 20. HOSSAIN M.K., STREZOV V., CHAN K.Y., NELSON P.F. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere. 78, (9), 1167, 2010.
  • 21. PARK J.H., CHOPPALA G.K., BOLAN N.S., CHUNG J.W., CHUASAVATHI T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil, 348, (1-2), 439, 2011.
  • 22. JÄRUP L. Hazards of heavy metal contamination. Brit Med Bull, 68, (1),167, 2003.
  • 23. BEESLEY L., MARMIROLI M. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut. 159, (2), 474, 2011.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6a1a4af4-2a35-4645-94d4-513ec66f8f87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.