PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 20 | 2 |

Tytuł artykułu

Direct effect of hypothalamic neuropeptides on the release of catecholamines by adrenal medulla in sheep - study ex vivo

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Stress causes the activation of both the hypothalamic-pituitary-adrenocortical axis and sympatho-adrenal system, thus leading to the release from the adrenal medulla of catecholamines: adrenaline and, to a lesser degree, noradrenaline. It has been established that in addition to catecholamines, the adrenomedullary cells produce a variety of neuropeptides, including corticoliberine (CRH), vasopressin (AVP), oxytocin (OXY) and proopiomelanocortine (POMC) – a precursor of the adrenocorticotropic hormone (ACTH). The aim of this study was to investigate adrenal medulla activity in vitro depending, on a dose of CRH, AVP and OXY on adrenaline and noradrenaline release. Pieces of sheep adrenal medulla tissue (about 50 mg) were put on 24-well plates and were incubated in 1 mL of Eagle medium without hormone (control) or supplemented only once with CRH, AVP and OXY in three doses (10⁻⁷, 10⁻⁸ and 10⁻⁹ M) in a volume of 10 μL. The results showed that CRH stimulates adrenaline and noradrenaline release from the adrenal medulla tissue. The stimulating influence of AVP on adrenaline release was visible after the application of the two lower doses of this neuropeptide; however, AVP reduced noradrenaline release from the adrenal medulla tissue. A strong, inhibitory OXY effect on catecholamine release was observed, regardless of the dose of this hormone. Our results indicate the important role of OXY in the inhibition of adrenal gland activity and thus a better adaptation to stress on the adrenal gland level.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

20

Numer

2

Opis fizyczny

p.339-346,fig.,ref.

Twórcy

autor
  • Department of Animal Physiology and Endocrinology, Faculty of Animal Science, Hugon Kollataj Agricultural University in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
autor
  • University Centre of Veterinary Medicine UJ-UR Center, Hugon Kollataj Agricultural University in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
autor
  • Department of Animal Physiology and Endocrinology, Faculty of Animal Science, Hugon Kollataj Agricultural University in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland

Bibliografia

  • Bosch OJ, Neumann ID (2012) Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: from central release to sites of action. Horm Behav 61: 293-303.
  • Burnstock G (2014) Purinergic signaling in endocrine organs. Purinergic Signal 10: 189-231.
  • Connan F, Lightman SL, Landau S, Wheeler M, Treasure J, Campbell IC (2007) An investigation hypothalamic-pituitary-adrenal axis hyperactivity in anorexia nervosa: the role of CRH and AVP. J Psychiatric Res 41: 131-143.
  • Edwards SL, Anderson CR, Southwell BR, McAllen RM (1996) Distinct preganglionic neurons innervate noradrenaline and adrenaline cells in the cat adrenal medulla. Neuroscience 70: 825-832.
  • Eisenhofer G, Kopin IJ, Goldstein DS (2004) Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 56: 331-349.
  • Engelmann M, Landgraf R, Wotjak CT (2004) The hypothalamic-neurohypophysial system regulates the hypothalamic-pituitary-adrenal axis under stress: an old concept revisited. Front Neuroendocrinol 25: 132-149.
  • Gallo-Payet N, Guillon G (2008) Regulation of adrenocortical function by vasopressin. Horm Metab Res 30: 360-367.
  • Goldman M, Marlow-O’Connor M, Torres I, Carter CS (2008) Diminished plasma oxytocin in schizophrenic patients with neuroendocrine dysfunction and emotional deficits. Schizophr Res 98: 247-255.
  • Heinrichs M, Baumgartner T, Kirchbaum C, Ehlert U (2003) Social support and oxytocin interact to suppress cortisol and subjective responses to psychological stress. Biol Psychiat 54: 1389-1398.
  • Jovanovic P, Spasojevic N, Stefanovic B, Bozovic N, Jasnic N, Djordjevic J, Dronjak S (2014) Peripheral oxytocin treatment affects the rat adreno-medullary catecholamine content modulating expression of vesicular monoamine transporter 2. Peptides 51: 110-114.
  • Knight DE, Baker PF (1983) Stimulus-secretion coupling in isolated bovine adrenal medullary cells. Q J Exp Physiol 68: 123-143.
  • Kubovcakova L, Tybitanclova K, Sabban EL, Majzoub J, Zorad S, Vietor I, Wagner EF, Krizanova O, Kvetnansky R (2004) Catecholamine synthesizing enzymes and their modulation by immobilization stress in knockout mice. Ann NY Acad Sci 1018: 458-465.
  • Legros JJ (2001) Inhibitory effect of oxytocin on corticotrope function in humans: are vasopressin and oxytocin ying-yang neurohormones? Psychoneuroendocrinology 26: 649-655.
  • Mazzocchi G, Malendowicz LK, Rebuffat P, Nussdorfer GG (1992) Effects of galanin on the secretory activity of the rat adrenal cortex: in vivo and in vitro studies. Res Exp Med (Berl) 192: 373-381.
  • McEwen BB (2004) Closing remarks: review and commentary on selected aspects of the roles of vasopressin and oxytocin in memory processing. Adv Pharmacol 50: 593-654, 655-708.
  • Murat B, Devost D, Andres M, Mion J, Boulay V, Corbani M, Zingg HH, Guillon G (2012) V1b and CRHR1 receptor heterodimerization mediates synergistic biological actions of vasopressin and CRH. Molar Endocrinol 26: 502-520.
  • Schinner S, Bornstein SR (2005) Cortical-chromaffin cell interactions in the adrenal gland. Endocr Pathol 16: 91-98.
  • Stachowiak A, Macchi C, Nussdorfer GG, Malendowicz LK (1995) Effects of oxytocin on the function and morphology of the rat adrenal cortex: in vitro and in vivo investigations. Res Exp Med (Berl) 195: 265-274.
  • Tillinger A, Sollas A, Serova LI, Kvetnansky R, Sabban EL (2010) Vesicular monoamine transporters (VMATs) in adrenal chromaffin cells: stress-triggered induction of VMAT2 and expression in epinephrine synthesizing cells. Cell Mol Neurobiol 30: 1459-1465.
  • Ungar A, Phillips JH (1983) Regulation of the adrenal medulla. Physiol Rev 63: 787-843.
  • Winslow JT, Insel TR (2006) Neuroendocrine basis of social recognition. Curr Opin Neurobiol 14: 248-253.
  • Wong DL (2003) Why is the adrenal adrenergic? Endocr Pathol 14: 25-36.
  • Wong DL (2006) Epinephrine biosynthesis: hormonal and neural control during stress. Cell Mol Neurobiol 26: 891-900.
  • Wronska-Fortuna D, Sechman A, Hrabia A, Zięba D (2009) Effect of hypothalamic neuropeptides (CRH, AVP and OXY) on in vitro cortisol release by sheep adrenal gland. 18th Internat Cong Materials, pp 372-373.
  • Wronska-Fortuna D, Szychowski K, Sechman A, Błachuta M (2010) Differential response of OXY and its receptor gene expression to stress in the adrenal cortex and medulla. Pol J Endocrinol 6, Congressional papers, pp 761.
  • Wurtman RJ (2002) Stress and the adrenocortical control of epinephrine synthesis. Metabolism 51: 11-14.
  • Yamaguchi-Shima N, Okada S, Shimizu T, Usui D, Nakamura K, Lu L, Yokotani K (2007) Adrenal adrenaline and noradrenaline-containing cells and celiac sympathetic ganglia are differentially controlled by centrally administered corticotropin-releasing factor and arginine-vasopressin in rats. Eur J Pharmacol 564: 94-102.
  • Yokotani K, Murakami Y, Okada S, Hirata M (2001) Role of brain arachidonic acid cascade on central CRF1 receptor-mediated activation of sympatho-adrenomedullary outflow in rats. Eur J Pharmacol 419: 183-189.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-69f71104-a0d5-4aa9-b089-911ca0bbc85e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.