PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 19 | 2 |

Tytuł artykułu

Antioxidant potential of tomato (Solanum lycopersicum L.) seedlings as affected by the exogenous application of organoiodine compounds

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Salicylic acid is one of the regulatory compounds involved in numerous processes in plants. Previous studies indicated that also its halogen derivatives may exhibit similar roles. The aim of the work was to evaluate the influence of iododerivatives of salicylic acid such as: 5-iodosalicylc acid (5I-SA) and 3,5-diiodosalicylic acid (3,5diI-SA) on selected aspects of antioxidant capacity of tomato seedlings. The efficiency of improving iodine accumulation in tomato seedlings was also studied. No tested organoiodine compound had a negative effect on the growth and development of tomato seedlings. The presence of iodosalicylic acids in the nutrient solution led to a decrease of the content of salicylic acid, ascorbic acid and phenolic compounds in tomato seedlings. A modifying effect of tested organoiodine compounds on the antioxidant activity of tomato seedling extracts varied with respect to analyzed enzyme and applied assays. It has been confirmed that higher plants can take up and accumulate iodine from organoiodine compounds in levels not causing any symptoms of toxicity.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

2

Opis fizyczny

p.3-15,fig.,ref.

Twórcy

  • Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
autor
  • Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
autor
  • Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
autor
  • Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland

Bibliografia

  • Agarwal, S., Sairam, R.K., Srivastava, G.C., Tyagi, A., Meena, R.C. (2005). Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Sci. 169, 559–570. DOI: 10.1016/j.plantsci.2005.05.004
  • Apak, R., Güclü, K., Özyürek, M., Esin Karademir, S. (2010). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem., 52, 7970–7981. DOI: 10.1021/jf048741x
  • Beers, R.F., Sizer, I.W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem., 195(1), 133–140.
  • Benzie, I.F.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem., 239, 70–76. DOI: 10.1006/abio.1996.0292
  • Blasco, B., Rios, J.J., Cervilla, L.M., Sánchez-Rodrigez, E., Ruiz, J.M., Romero, L. (2008). Iodine biofortification and antioxidant capacity of lettuce: potential benefits for cultivation and human health. Ann. Appl. Biol., 152(3), 289–99. DOI: 10.1111/j.1744-7348.2008.00217.x
  • Blokhina, O., Virolainen, E., Fagerstedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot., 91(2), 179–194. DOI: 10.1093/aob/mcf118
  • Boudet, A.M. (2007). Evolution and current status of research in phenolic compounds. Phytochemistry, 68, 2722–2735. DOI: 10.1016/j.phytochem.2007.06.012
  • Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT – Food Sci. Technol., 28, 25–30. DOI: 10.1016/S0023-6438(95)80008-5
  • Caffagni, A., Arru, L., Meriggi, P., Milc, J., Perata, P., Pecchioni, N. (2011). Iodine fortification plant screening process and accumulation in tomato fruits and potato tubers. Commun. Soil Sci. Plant Anal., 42(6), 706–718. DOI: 10.1080/00103624.2011.550372
  • Chen, Y.E., Cui, J.M., Li, G.X., Yuan, M., Zhang, Z.W., Yuan, S., Zhang, H.Y. (2016). Effect of salicylic acid on the antioxidant system and photosystem II in wheat seedlings. Biol. Plant., 60(1), 139–147. DOI: 10.1007/s10535-015-0564-4
  • Choudhury, S., Panda, S.K. (2004). Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulg. J. Plant Physiol., 30(3–4), 95–110.
  • Coolen, S.A., Huf, F.A., Reijenga, J.C. (1998). Determination of free radical reaction products and metabolites of salicylic acid using capillary electrophoresis and micellar electrokinetic chromatography. J. Chromatog. B, 717, 119–124. DOI: 10.1016/s0378-4347(98)00289-8
  • Dai, J.L., Zhu, Y.G., Zhang, M., Huang, Y.Z. (2004). Selecting iodine-enriched vegetables and the residual effect of iodate application to soil. Biol. Trace Elem. Res., 101(3), 265–276. DOI: 10.1385/BTER:101:3:265
  • Dat, J.F., Lopez-Delgado, H., Foyer, C.H., Scott, I.M. (2000). Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. J. Plant Physiol., 156(5–6), 659–665. DOI: 10.1016/S0176-1617(00)80228-X
  • Dresler, S., Maksymiec, W. (2013). Capillary zone electrophoresis for determination of reduced and oxidized ascorbate and glutathione in roots and leaf segments of Zea mays plants exposed to Cd and Cu. Acta Sci. Pol. Hort. Cult., 12(6), 143–155.
  • Durner, J., Klessig, D.F. (1995). Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. P. Natl. Acad. Sci. USA, 92(24), 11312–11316. DOI: 10.1073/pnas.92.24.11312
  • Giovanelli, G., Buratti, S. (2009). Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem., 112(4), 903–908. DOI: 10.1016/j.foodchem.2008.06.066
  • Gonzali, S., Kiferle, C., Perata, P. (2017). Iodine biofortification of crops: agronomic biofortification, metabolic engineering and iodine bioavailability. Curr. Op. Biotech., 44, 16–26. DOI: 10.1016/j.copbio.2016.10.004
  • Guan, L., Scandalios, J.G. (1995). Developmentally related responses of maize catalase genes to salicylic acid. P. Natl. Acad. Sci. USA, 92(13), 5930–5934. DOI: 10.1073/pnas.92.13.5930
  • Hayat, S., Hasan, S.A., Fariduddin, Q., Ahmad, A. (2008). Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. J. Plant Int., 3(4), 297–304.
  • Hayat, Q., Hayat, S., Irfan, M., Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment. Environ. Exp. Bot., 68, 14–25. DOI: 10.1016/j.envexpbot.2009.08.005
  • Janda, T., Szalai, G., Tari, I., Paldi, E. (1999). Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta, 208(2), 175–180. DOI: 10.1007/s004250050547
  • Kang, G.Z., Wang, Z.X., Sun, G.C. (2003). Participation of H2O2 in enhancement of cold chilling by salicylic acid in banana seedlings. Acta Bot. Sin., 45, 567–573.
  • Knörzer, O. C., Lederer, B., Durner, J., Böger, P. (1999). Antioxidative defense activation in soybean cells. Physiol. Plant., 107(3), 294–302.
  • Lin, J.S., Wang, G.X. (2002). Doubled CO2 could improve the drought tolerance better in sensitive cultivars than in tolerant cultivars in spring wheat. Plant Sci., 163(3), 627–637. DOI: 10.1016/S0168-9452(02)00173-5
  • Mishra, K., Ojha, H., Chaudhury, N.K. (2012). Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chem., 130(4), 1036–1043. DOI: 10.1016/j.foodchem.2011.07.127
  • Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22(5), 867–880.
  • Panda, S.K., Patra, H.K. (2007). Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves. Acta Physiol. Plant., 29, 567–575.
  • PN-EN 15111 (2008). Food stuffs – Determination of trace elements – determination of iodine by ICP-MS (Inductively Coupled Plasma Mass Spectrometry). Polish Committee of Standardization, Warsaw.
  • Prior, R.L., Wu, X., Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agr. Food Chem., 53(10), 4290–4302. DOI: 10.1021/jf0502698
  • Reuveni, R., Shimoni, M., Karchi, Z., Kuc, J. (1992). Peroxidase activity as a biochemical marker for resistance of muskmelon (Cucumis melo) to Pseudoperonospora cubensis. Phytopathology, 82(7), 749–753.
  • Rice-Evans, C., Miller, N., Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends Plant Sci., 2(4), 152–159.
  • Rocher, F., Chollet, J.F., Jousse, C., Bonnemain, J.L. (2006). Salicylic acid, an ambimobile molecule exhibiting a high ability to accumulate in the phloem. Plant Physiol., 141(4), 1684–1693. DOI: 10.1104/pp.106.082537
  • Sady, W., Smoleń, S., Ledwożyw-Smoleń, I. (2014). Methods of vegetables biofortification in iodine in hydroponics. Patent application no. P.410806 filed into the Polish Patent Office on 30 XII 2014.
  • Safari, S., Soleimani, M.J., Mohajer, A., Fazlikhani, L. (2013). Possible structure-activity profile of salicylate derivatives: their relationship on induction of systemic acquired resistance. Intern. J. Agric. Technol., 9(5), 1215–1225.
  • Siegrist, J., Jeblick, W., Kauss, H. (1994). Defense responses in infected and elicited cucumber (Cucumis sativus L.) hypocotyl segments exhibiting acquired resistance. Plant Physiol., 105, 1365–1374. DOI: 10.1104/pp.105.4.1365
  • Smoleń, S., Ledwożyw-Smoleń, I., Sady, W. (2016). The role of exogenous humic and fulvic acids in iodine biofortification in spinach (Spinacia oleracea L.). Plant Soil, 402, 129–143. DOI: 10.1007/s11104-015-2785-x
  • Smoleń, S., Ledwożyw-Smoleń, I., Halka, M., Sady, W., Kováčik, P. (2017). The absorption of iodine from 5-iodosalicylic acid by hydroponically grown lettuce. Sci. Hortic., 225, 716–725. DOI: 10.1016/j.scienta.2017.08.009
  • Summermatter, K., Sticher, L., Métraux, J.P. (1995). Systemic responses in Arabidopsis thaliana infected and challenged with Pseudomonas syringae pv syringae. Plant Physiol., 108(4), 1379–1385. DOI: 10.1104/pp.108.4.1379
  • Swain, T., Hillis, W.E. (1959). Phenolic constituents of Prunus domestica. I. Quantitative analysis of phenolic constituents. J. Sci. Food Agric., 10, 63–71. DOI: 10.1002/jsfa.2740100110
  • Tirzitis, G., Bartosz, G. (2010). Determination of antiradical and antioxidant activity: basic principles and new insights. Acta Biochim. Pol., 57(1), 139–142. DOI: 10.18388/abp.2010_2386
  • Wang, Y., Hu, J., Qin, G., Cui, H., Wang, Q. (2012). Salicylic acid analogues with biological activity may induce chilling tolerance of maize (Zea mays) seeds. Botany, 90, 845–855.
  • Waterborg, J.H. (2009). The Lowry method for protein quantification. In: The proteins protocols handbook, Walker, J.M. (ed.). Humana Press, New York, USA, 7–10.
  • Willekens, H., Villarroel, R., Van Montagu, M., Inzé, D., Van Camp, W. (1994). Molecular identification of catalases from Nicotiana plumbaginifolia (L.). FEBS Lett., 352(1), 79–83. DOI: 10.1016/0014-5793(94)00923-6
  • Willekens, H., Inzé, D., Van Montagu, M., Van Camp, W. (1995). Catalases in plants. Mol. Breed., 1(3), 207–228. DOI: 10.1007/BF02277422
  • Wysocka-Owczarek, M. (2001). Pomidory pod osłonami. Uprawa tradycyjna i nowoczesna. [Tomatoes under cover. The conventional and modern cultivation], 1st ed. Hortpress, Warsaw, Poland [in Polish].
  • Xie, J., Schaich, K.M. (2014). Re-evaluation of the 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity. J. Agri. Food Chem., 62(19), 4251–4260. DOI: 10.1021/jf500180u
  • Yusuf, M., Hasan, S.A., Ali, B., Hayat, S., Fariduddin, Q., Ahmad, A. (2008). Effect of salicylic acid on salinity induced changes in Brassica juncea. J. Integr. Plant Biol., 50(8), 1–4. DOI: 10.1111/j.1744-7909.2008.00697.x
  • Zhao, Y.Q., Zheng, J.P., Yang, M.W., Yang, G.D., Wu, Y.N., Fu, F.F. (2011). Speciation analysis of selenium in rice samples by using capillary electrophoresis-inductively coupled plasma mass spectrometry. Talanta, 84(3), 983–988. DOI: 10.1016/j.talanta.2011.03.004
  • Zimmermann, M.B., Boelaert, K. (2015). Iodine deficiency and thyroid disorders. Lancet Diabet. Endocrinol., 3(4), 286–295. DOI: 10.1016/S2213-8587(14)70225-6

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-69386a32-fa60-43c2-a45d-8a76c9b2e4d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.