PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 51 | 2 |

Tytuł artykułu

Negative effects of high temperatures during development on immediate post-fledging survival in Great Tits Parus major

Warianty tytułu

PL
Negatywny wpływ wysokiej temperatury podczas rozwoju piskląt bogatki na ich przeżywalność po wylocie z gniazda

Języki publikacji

EN

Abstrakty

EN
We analyzed the effect of nest temperatures, fledging date, age at fledging, fledgling mass and size on post- fledging survival of Great Tits Parus major in eastern Spain. We manipulated temperature during nestling development in 26 nests (average temperature was 39.8, 34.6 and 26.4 °C for heated, control and cooled nest-boxes, respectively), and used radio-telemetry to monitor the survival of 48 nestlings (16 heated, 18 cooled, 14 controls) during the first 15 days after fledging. Heated chicks were lighter than control and cooled chicks. Estimated survival of heated fledglings was lower than that of controls. Additionally, survival of control fledglings increased with size, but this relationship was reversed for heated fledglings. Our results suggest that high temperatures experienced in the nest could have negative consequences on immediate post-fledging survival, and that smaller nestlings may deal more effectively with temperatures surpassing their optimal thermal range.
PL
U drobnych wróblaków przeżywalność w okresie tuż po wylocie z gniazda jest bardzo niska i zależy m.in. od kondycji ptaków opuszczających gniazdo. W pracy analizowano wpływ temperatury panującej w gnieździe podczas rozwoju piskląt na ich przeżywalność w ciągu dwóch tygodni od opuszczenia gniazda. Manipulowano temperaturą panującą w skrzynkach lęgowych tworząc trzy grupy gniazd: podgrzewane, kontrolne (nie manipulowane) i ochładzane (średnie temperatury w gniazdach wynosiły odpowiednio 39,8, 34,6 i 26,4 °C, lęgi wybrane do badań nie różniły się podstawowymi parametrami biologii lęgów, Tab. 1). Dwa najcięższe pisklęta z każdego gniazda zostały wyposażone w 15 dniu życia w nadajniki telemetryczne, dzięki którym monitorowano ich przeżywalność po wylocie. Stwierdzono, że pisklęta z gniazd podgrzewanych były lżejsze niż z pozostałych grup. Szanse na przeżycie pierwszych dwóch tygodni po wylocie z gniazda były różne dla piskląt z lęgów podgrzewanych i kontrolnych (Tab. 2, 3), większe szanse miały ptaki z gniazd nie manipulowanych (Fig. 1). Dodatkowo na przeżycie piskląt w ciągu pierwszego dnia po opuszczeniu gniazda wpływała wielkość ciała, określona za pomocą długości skoku. Wpływ ten był jednak odmienny w zależności od typu gniazda: w gniazdach nie manipulowanych był dodatni, a podgrzewanych — ujemny (Fig. 2, Tab. 4). Wyniki pracy sugerują, że wysokie temperatury w trakcie okresu rozwoju gniazdowego mogą mieć negatywny wpływ na przeżywalność piskląt po wylocie z gniazda, oraz, że mniejsze pisklęta mogą skuteczniej radzić sobie z temperaturami przewyższającymi zakres optymalnych temperatur.

Wydawca

-

Czasopismo

Rocznik

Tom

51

Numer

2

Opis fizyczny

p.235-244,fig.,ref.

Twórcy

autor
  • 'Cavanilles' Institute of Biodiversity and Evolutionary Biology, University of Valencia, Catedratico Jose Beltran 2, 46980 Valencia, Spain
  • 'Cavanilles' Institute of Biodiversity and Evolutionary Biology, University of Valencia, Catedratico Jose Beltran 2, 46980 Valencia, Spain
autor
  • 'Cavanilles' Institute of Biodiversity and Evolutionary Biology, University of Valencia, Catedratico Jose Beltran 2, 46980 Valencia, Spain

Bibliografia

  • Álvarez E., Barba E. 2008. Nest quality in relation to adult bird condition and its impact on reproduction in Great Tits Parus major. Acta Ornithol. 43: 3-9.
  • Álvarez E., Barba E. 2014. Behavioural responses of great tits to experimental manipulation of nest temperature during incubation. Ornis Fennica 91: 220-230.
  • Álvarez E., Belda E. J., Verdejo J., Barba E. 2013. Variation in Great Tit nest mass and composition and its breeding consequences: a comparative study in four Mediterranean habitats. Avian Biol. Res. 6: 39-46.
  • Andreu J., Barba E. 2006. Breeding dispersal of Great Tits Parus major in a homogeneous habitat: effects of sex, age, and mating status. Ardeola 94: 45-58.
  • Ardia D. R. 2005. Tree swallows trade off immune function and reproductive effort differently across their range. Ecology 86: 2040-2046.
  • Belda E. J., Ferandis P., Gil-Delgado J. A. 1995. Clutch size variation and nest failure of the Serin Serinus serinus in orange groves. Ardeola 42: 1-10.
  • Bergmann C. 1847. Über die Verhältnisse der Wärmeökonomie der Tiere zu ihrer Grösse. Göttinger Stud. 3: 595-708.
  • Both C., Visser M. E., Verboven N. 1999. Density-dependent recruitment rates in great tits: the importance of being heavier. Proc. R. Soc. Lond. B 266: 465-469.
  • Burnham K. P., Anderson D. R. (eds). 1998. Model selection and inference. A practical information-theoretic approach. Springer-Verlag, New York.
  • Canestrari D., Marcos J. M., Baglione V. 2007. Costs of chick provisioning in cooperatively breeding crows; an experimental study. Anim. Behav. 73: 349-357.
  • Carrascal L. M., Senar J. C., Mozetich I., Uribe F., Doménech J. 1998. Interactions among environmental stress, body condition, nutritional status, and dominance in great tits. Auk 115: 727-738.
  • Cooch E., White G. (eds). 2011. Program Mark: a gentle introduction (10th edition). Cornell University, Ithaca, New York.
  • Cox W. E., Thompson III F. R., Cox A. S., Faaborg J. 2014. Post- fledging survival in passerine birds and the value of post- fledging studies to conservation. J. Wildl. Manage. 78: 183-193.
  • Dawson R. D., Lawrie C. C., O'Brien E. L. 2005. The importance of microclimate variation in determining size, growth and survival of avian offspring: experimental evidence from a cavity nesting passerine. Oecologia 144: 499-507.
  • De Laet J. 1985. Dominance and anti-predator behaviour of great tits Parus major: a field study. Ibis 127: 372-377.
  • Dial K. P. 2003. Evolution of avian locomotion: correlates of flight style, locomotor modules, nesting biology, body size, development, and the origin of flapping flight. Auk 120: 941-952.
  • Drent P. 1984. Mortality and dispersal in summer and its consequences for the density of great tits Parus major at the onset of autumn. Ardea 72: 127-162.
  • Ens B. J., Kersten M., Brennikmeijer A., Hulscher J. B. 1992. Territory quality, parental effort and reproductive success of oystercatchers (Haematcrpus ostralegus). J. Anim. Ecol. 61: 703-715.
  • Franklin A. B. 2001. Exploring ecological relationships in survival and estimating rates of population change using program MARK. In: Field R., Warren R. J., Okarma H., Sievert P. R. (eds). Wildlife, land, and people: priorities for the 21st century. Proc. of the 2nd Int. Wildl. Manage. Cong. The Wildlife Society, MD, Bethesda, pp. 290-296.
  • Gardner J. L., Amano T., Backwell P. R. Y., Ikin K., Sutherland W. J., Peters A. 2014. Temporal patterns of avian body size reflect linear size responses to broadscale environmental change over the last 50 years. J. Avian. Biol. 45: 529-535.
  • Garnett M. C. 1981. Body size, its heritability and influence on juvenile survival among great tits, Parus major. Ibis 123: 31-41.
  • Geraert P. A., Padilha J. C., Guillaumin S. 1996. Metabolic and endocrine changes induced by chronic heat exposure in broiler chickens: growth performance, body composition and energy retention. Brit. J. Nutr. 75: 195-204.
  • Gil-Delgado J. A., Escarré A. 1977. [Avian fauna in Valencian orange groves. I. Preliminary data on the Blackbird (Turdus merula.)]. Mediterránea, Serie Biológica 2: 89-109.
  • Gill F. B. (ed.). 1995. Ornithology. W. H. Freeman and Co., NY.
  • Glądalski M., Bańbura M., Kaliński A., Markowski M., Skwarska J., Wawrzyniak J., Zieliński P., Bańbura J. 2014. Extreme weather event in spring 2013 delayed breeding time of Great Tit and Blue Tit. Int. J. Biometeorol. 58: 2169- 2173.
  • Greño J. L., Belda E. J., Barba E. 2008. Influence of temperatures during the nestling period on post-fledging survival of Great Tit Parus major in a Mediterranean habitat. J. Avian Biol. 39: 41-49.
  • Grüebler M., Naef-Daenzer B. 2008. Fitness consequences of pre- and post-fledging timing decisions in a double-brooded passerine. Ecology 89: 2736-2745.
  • Lambrechts M. M., Adriaensen F., Ardia D. R., Artemyev A. V., et al. 2010. The design of artificial nestboxes for the study of secondary hole-nesting birds: a review of methodological inconsistencies and potential biases. Acta Ornithol. 45: 1-26.
  • Lebreton J. D., Burnham K. P., Clobert J., Anderson D. R. 1992. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol. Monogr. 62: 67-118.
  • Mertens J. A. L. 1977a. Thermal conditions for successful breeding in great tits (Parus major L.) I. Relation of growth and development of temperature regulation in nestling great tits. Oecologia 28: 1-29.
  • Mertens J. A. L. 1977b. Thermal conditions for successful breeding in great tits (Parus major L.) II. Thermal properties of nests and nestboxes and their implications for the range of temperature tolerance of great tit broods. Oecologia 28: 31-56.
  • Monrós J. S., Belda E. J., Barba E. 2002. Post-fledging survival of individual great tits: the effect of hatching date and fledging mass. Oikos 99: 481-488.
  • Murphy M. T. 1985. Nestling eastern kingbird growth: effects of initial size and ambient temperature. Ecology 66: 162-170.
  • Naef-Daenzer B., Widmer F., Nuber M. 1999. Is the timing of breeding in great and coal tits adapted to maximum nestling food or to avoid juvenile predation? Proc. of the XXn Int. Orn. Cong., Durban, pp. 1406-1415.
  • Naef-Daenzer B., Widmer F., Nuber M. 2001. Differential post- fledging survival of great and coal tits in relation to their condition and fledging date. J. Anim. Ecol. 70: 730-738.
  • Pachauri R. K., Meyer L. A. (eds). 2014. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland.
  • Patz J. A., Campbell-Lendrum D., Holloway T., Foley J. A. 2005. Impact of regional climate change on human health. Nature 438: 310-317.
  • Perrins C. M. 1979. British Tits. Collins, London.
  • Perrins C. M. 1986. Survival of young great tits: relationships with weight. Proc. 19 Int. Orn. Cong., Ottawa, pp. 892-899.
  • Perrins C. M., McCleery R. H. 2001. The effect of fledgling mass on the lives of great tits Parus major. Ardea 89: 135-142.
  • Rappole J. H., Tipton A. R. 1991. New harness design for attachment of radio transmitters to small passerines. J. Field Ornithol. 62: 335-337.
  • Rodríguez S., Barba E. 2016a. Effects of cool nest microclimates on nestling development: an experimental study with Mediterranean great tits Parus major. Ardeola 63: 251-260.
  • Rodriguez S., Barba E. 2016b. Nestling growth is impaired by heat stress: an experimental study in a Mediterranean Great Tit population. Zool. Stud. 55: 40.
  • Saino N., Calza S., Møller A. P. 1997. Immunocompetence of nestling barn swallows in relation to brood-size and parental effort. J. Anim. Ecol. 66: 827-836.
  • Salo D. C., Donovan C. M., Davies K. J. 1991. HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radie. Biol. Med. 11: 239-246.
  • Sanz J. J. 2002. Climate change and birds: have their ecological consequences already been detected in the Mediterranean region? Ardeola 49: 109-120.
  • Schew W. A., Ricklefs R. E. 1998. Developmental plasticity. In: Starek J. M., Ricklefs R. E. (eds). Avian growth and development. Oxford University Press, Oxford, pp. 288-304.
  • Sedinger J. S., Flint P. L. 1995. Environmental influence on life- history traits: growth, survival, and fecundity in Black Brant (Branta bernicla). Ecology 76: 2404-2414.
  • Skalski J. R., Hoffman A., Smith S. G. 1993. Testing the significance of individual- and cohort-level covariates in animal survival studies. In: Lebreton J. D., North P. M. (eds). Marked individuals in the study of bird population. Birkhäuser Verlag, Basel, Switzerland, pp. 9-28.
  • Tinbergen J. M., Boerlijst M. C. 1990. Nestling weight and survival in individual great tits (Parus major). J. Anim. Ecol. 59: 1113-1127.
  • Tome D., Denac D. 2012. Survival and development of predator avoidance in the post-fledging period of the Whinchat (Saxicola rubetra): consequences for conservation measures. J. Ornithol. 153: 131-138.
  • van der Jeugd H. P., Larsson K. 1998. Pre-breeding survival of barnacle geese Branta leucopsis in relation to fledgling characteristics. J. Anim. Ecol. 67: 953-966.
  • Verboven N., Visser M. 1998. Seasonal variation in local recruitment of great tits: the importance of being early. Oikos 81: 511-524.
  • Verhulst S., van Balen J. H., Tinbergen J. M. 1995. Seasonal decline in reproductive success of the Great Tit: variation in time or quality? Ecology 76: 2392-2403.
  • White G. C., Burnham K. P. 1999. Program MARK-survival estimation from populations of marked animals. Bird Study 46 (supplement): S120-S139.
  • Winkler D. W., Dunn P. O., McCulloch C. E. 2002. Predicting the effects of climate change on avian life-history traits. Proc. Natl. Acad. Sci. USA. 99: 13595-13599.
  • Yom-Tov Y. 2001. Global warming and body mass decline in Israeli passerine birds. Proc. R. Soc. Lond. B 268: 947-952.
  • Yom-Tov Y., Yom-Tov S., Wright J., Thorne C. J. R., du Feu R. 2006. Recent changes in body weight and wing length among some British passerine birds. Oikos 112: 91-101.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-691e0d91-457a-440c-9031-70e353c4eda3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.