Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Rapid startup of simultaneous nitrogen and phosphorus removal (SNPR) process and the bacterial community dynamics in a GSBR

Warianty tytułu
Języki publikacji
This study inoculated aerobic granular sludge (AGS) in a sequencing batch reactor (SBR) treatment for low carbon nitrogen (COD/N) ratio wastewater, and gradually reduced the DO concentration in order to achieve the rapid startup of the simultaneous nitrogen and phosphorous removal (SNPR) process. Meanwhile, the microbial community dynamics at different DO levels were analyzed by high-throughput sequencing. The removal efficiencies of total nitrogen (TN) and phosphorus (TP) were significantly affected as different dissolved oxygen (DO) concentrations (2.0,1.2 and 0.8 mg/L) in stages I, II and III, respectively. When DO concentration was reduced to 0.8mg/L (stage III), the SNPR process was successfully implemented and the removal efficiencies of TN and TP were up to 77.30% and 85.78%, respectively. A total of 40,983 effective 16S rRNA gene sequences were generated from four samples (1-4) that widely represented microbial community diversity. The dominant phyla transformed from Candidate_division_TM7 (the relative abundance of 68.08%) and proteobacteria (25.78%) to Firmicutes (47.57%) and proteobacteria (41.49%) when DO concentration was decreased from 2.0 mg/L (stage I) to 0.8 mg/L(stage III). Moreover, Kluyvera, Peptostreptococcaceae_incertae_ sedis, Clostridium_sensu_strict_1, Trichococcus, Denitratisoma, Clostridium_sensu_stricto_13 and Raoultell were the most abundant genus in the SNPR process. Among these communities, Clostridium_ sensu_strict_1, Clostridium_sensu_stricto_13 and Denitratisoma were considered the main organisms responsible for simultaneous nitrogen and phosphorus removal.
Słowa kluczowe
Opis fizyczny
  • College of Resources and Environment, Chengdu University of Information Technology, Chengdu, China
  • College of Resources and Environment, Chengdu University of Information Technology, Chengdu, China
  • 1. ZANETTI L., FRISON N., NOTA E., TOMIZIOLI M., BOLZONELLA D., FATONE F. Progress in realtime control applied to biological nitrogen removal from wastewater. A short review.Desalin. 286, 1, 2012.
  • 2. ZENG W., Li B., WANG X.D., BAI X.L., PENG Y.Z. Ntegration of denitrifying phosphorus removal via nitrite pathway,simultaneous nitritation-denitritation and anammox treating carbon-limited municipal sewage. Bioresoure. Technology. 172, 356, 2014.
  • 3. HE Q., WANG H., YANG X., ZHOU J., YE Y., CHEN D., YANG K. Culture of denitrifying phosphorus removal granules with different influent wastewater. Desalination and Water Treatment. 57 (37), 17247, 2016.
  • 4. RICARDO B.C., ANNE-CLAIRE T., EĺAS R.F., RAMN M.P., JORGE G. Biotransformation of aromatic compounds from wastewaters containing N and/or S, by nitrification/denitrification: a review. Reviews in Environmental Science and Bio/Technology. 8, 325, 2009.
  • 5. BAEK S.H., PAGILLA K.R. Simultaneous nitrification and denitrification of municipal wastewater in aerobic membrane bioreactors.Water Environment research.80 (2), 109, 2008.
  • 6. YANG S., YANG F.L. Nitrogen removal via shortcut simultaneous nitrificaition and denitrification in an intermittently arated moving bed membrane bioreactor. Journal of Hazardous Materials. 195 (15), 318, 2011.
  • 7. ZHENG H.Y., LIU Y., GAO X.Y., AI G.M., MIAO L.L., LIU Z.P. Characterization of a marine origin aerobic nitrifying-denitrifying bacterium. Journal of Bioscience Bioengineer. 114 (1), 33, 2012.
  • 8. KAMPSCHREUR M.J., TEMMINK H., KLEEREBEZEM R., JETTEN M.S.M., LOOSDRECHT M.V. Nitrous oxide emission during wastewater treatment. Water Research. 43, (17), 4093, 2009.
  • 9. YUAN Q.Y., OLESZKIEWICZ J.A. Lowtemperature biological phosphorus removal and partial nitrification in a pilot sequencing batch reactor system. Water Science and Technology. 63 (12), 2802, 2011
  • 10. LIU W.L., PENG T., MIAO Y.Y., ZHANG W.T., MA B., PENG Q.Z. Achievement of short-cut denitrification and enhancement of phosphorus removal in a SAOSBR process. China Environmental Science. 34 (12), 3062, 2014.
  • 11. SAMUEL L., CHRISTOF H. Optimization of operation conditions for the startup of aerobic granular sludge reactors biologically removing carbon, nitrogen, and phosphorous. Water Research. 59, 58, 2014.
  • 12. ZHAO X., CHEN Z.L., SHEN J.M., WANG X.C. Performance of aerobic granular sludge in different bioreactors. Environmental Technology. 35 (8), 938, 2014.
  • 13. LOTITO A.M., FRATINO U., MANCINI A., BERGNA G., IACONI C.D. Effective aerobic granular sludge treatment of a real dyeing textile wastewater. International Biodeterioration and Biodegradation . 69 (7), 62, 2012.
  • 14. HE Q., ZHOU J., WANG H., ZHANG J., WEI L. Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor. Bioresource Technology. 214, 1, 2016b.
  • 15. HESHAM A.E.L., QI R., YANG M. Comparison of bacterial community structures in two systems of a sewage treatment plant using PCR-DGGE analysis. Journal of Environmental Science. 23 (12), 2049, 2011.
  • 16. ZOU J.T., LI Y.M., ZHANG L.L., WANG R.Y., SUN J. Understanding the impact of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system. Bioresource Technology. 177, 209, 2015.
  • 17. LI Y.M., ZOU J.T., ZHANG L.L., SUN J. Aerobic granular sludge for simultaneous accumulation of mineral phosphorus and removal of nitrogen via nitrite in wastewater. Bioresource Technology. 154, 178, 2014.
  • 18. SHENDURE J., JI H. Next-generation DNA sequencing. Natural Biotechnology. 26 (10), 1135, 2008.
  • 19. QUIGLEY L., O’SULLIVAN O., BERESFORD T.P., ROSS R.P., FITZGERALD G.F., COTTER P.D. Highthroughput sequencing for detection of subpopulations of bacteria not previously associated with artisanal cheeses. Appllied Microbiological and Biotechnology. 78 (16), 5717, 2012.
  • 20. GUO F., ZHANG T. Biases during DNA extraction of activated sludge samples revealed by high throughput sequencing. Appllied Microbiological and Biotechnology . 97, 4607, 2013.
  • 21. ZHANG Y., WANG X., HU M., LI P.F. Effect of hydraulic retention time (HRT) on the biodegradation of trichloroethylene wastewater and anaerobic bacterial community in the UASB reactor. Appllied Microbiological and Biotechnology. 99, 1977, 2015.
  • 22. XIN X., LU H., YAO L., LENG L., GUAN L. Rapid Formation of Aerobic Granular Sludgeand Its Mechanism in a Continuous-Flow Bioreactor. Appllied Biochemistry and Biotechnology. 181, 424, 2017.
  • 23. SHU D.T., HE Y.L., YUE H., WANG Q.Y. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing. Bioresoure Technology. 186, 163, 2015.
  • 24. APHA., AWWA., WPCF. Standard method for the examination of water and wastewater. 21th ed. Washington DC 20001-3710, American Public Health Association 800 I Street, NW, 2005.
  • 25. RAHIMI Y., TORABIAN A., MEHRDADI N., SHAHMORADI B. Simultaneous nitrificationdenitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR). Journal of Hazardous Materials. 185 (2-3), 852, 2011.
  • 26. WANG F., LU S., WEI Y., JI M. Characteristics of aerobic granule and nitrogen and phosphorus removal in a SBR. Journal of Hazardous Materials.. 164, 1223, 2009.
  • 27. BASSIN J.P., KLEERRBEZEM R., DEZOTTI M., VAN LOOSDRECHT M.C.M. Simultaneous nitrogen and phosphate removal in aerobic granular sludge reactors operated at different temperatures. Water Research. 46 (12), 3805, 2012.
  • 28. DE KREUK M.K., HEIJNEN J.J., VAN LOOSDRECHT M.C.M. Simultaneous COD, nitrogen, and phosphate removal byaerobic granular sludge. Biotechnology Bioengineering. 90 (6), 761, 2005.
  • 29. DE KREUK M.K., VAN LOOSDRECHT M.C.M. Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Science andTechnology. 49, 9, 2004.
  • 30. ZHANG C.Y., ZHANG H.M., YANG F.L. Diameter control and stability maintenance of aerobic granular sludge in an A/O/A SBR. Separation and Purification Technology. 149, 362, 2015.
  • 31. DI B.G., TORREGROSSA M. Simultaneous nitrogen and organic carbon removal in aerobic granular sludge reactors operated with high dissolved oxygen concentration. Bioresoure Technology 142, 706, 2013.
  • 32. YE L., ZHANG T. Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Appllied Microbiological and Biotechnology. 97, 2681, 2013.
  • 33. JI S.L., CUI D.H., ZHOU M.J., LIU Y., QIN Z.P. Bacteria Diversity Analysis of Aerobic Granular Sludge for Nitrogen and Phosphorus Removal in Municipal Wastewater Treatment System. Journal of Beijing University technology. 39 (7), 1100, 2013.
  • 34. MA Q., QU Y.Y., SHEN W.L., ZHANG Z.J.J.W., LIU Z.Y., LI D.X., HUI J.L., ZHOU J.T. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina highthroughput sequencing. Bioresoure Technology. 179, 436, 2015.
  • 35. CHANG Y.M., YANG Q., HAO C.B., SHANG H.T., JIANG T.S. Experimental Study of Autotrophic Denitrification Bacteria Through Bioaugmentation of Activated Sludge from Municipal Wastewater Plant. Journal of Environmental Science. 32 (4), 1210, 2011.
  • 36. KRAGELUND C., LEVANTESI C., BORGERET A. Identity,abundanceand ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants. FEMS Microbiology Ecology. 59 (3), 671, 2007.
  • 37. LIU D.Y., QIU Y.L., YUAN X.Z., SHUAI X.S., GUO R.B. Enrichment and Identification of Anaerobic Ammonium Oxidation Bacteria. Journal of Environmental Science. 9 (33), 3208, 2012.
  • 38. MASZENAN A.M., SEVIOUR R.J., PATEL B.K., SCHUMANN P. Quadricoccus australiensis gen. nov., sp. nov., a beta-proteobacterium from activated sludge biomass. International Journal of Systematic and Evolutionary Microbiology. 52, 223, 2002.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.