PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 63 | 3 |

Tytuł artykułu

Auxins as one of the factors of plant growth improvement by plant growth promoting rhizobacteria

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Plant growth promoting rhizobacteria (PGPR) promote plant growth by various mechanisms such as phytohormone production, enhanced water and nutrient uptake, improved nitrogen availability in the soil, production of ACC-deaminase for ethylene breakdown, phosphate solubilization, siderophore production etc. Microbial auxin production is the major factor not only responsible for strengthening the plant-microbe relationship but it also promotes plant growth and development in a positive manner. Thus, bacterial auxin production potential can be exploited for plant growth improvement that may be effective in reducing the hazardous effects of chemical fertilizers on the ecosystem used to obtain higher yields. The present review gives a better understanding of various factors and mechanisms involved in auxin production by PGPR that may be helpful in proper exploitation of these natural resources in a beneficial way.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

63

Numer

3

Opis fizyczny

p.261-266,ref.

Twórcy

autor
  • Department of Botany, University of the Punjab, Lahore 54590, Pakistan
autor
  • Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan

Bibliografia

  • Ahmed A. and S. Hasnain. 2010. Auxin producing Bacillus sp.: Auxin quantification and effect on the growth Solanum tuberosum. Pure Appl Chem. 82 (1): 313–319.
  • Abd El-Hadi Nadia I.M., H.K. Abo El-Ala and W.M. Abd El- Azim. 2009. Response of some Mentha species to plant growth promoting bacteria isolated from soil rhizosphere. Aust. J. Basic. Appl. Sci. 3(4): 4437–4448.
  • Acosta I.F. and E.E. Farmer E.E. 2010. Jasmonates. In: The Arabidopsis Book .10.1199/tab.0129: e0129.
  • Arora N.K., S.C. Kang and D.K. Maheshwari. 2001. Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr. Sci. 81(6): 673–677.
  • Avanci N.C., D.D. Luche, G.H. Goldman and M.H.S. Goldman. 2010. Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet. Mol. Res. 9(1): 484–505.
  • Blomster T., J. Salojarvi, N. Sipari, M. Brosche, R. Ahlfors, M. Keinanen, K. Overmyer and J. Kangasjarvi. 2011. Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis. Plant Physiol. 157: 1866–1883.
  • Brandl M.T. and S.E. Lindow. 1998. Contribution of Indole-3-acetic acid production to the epiphytic fitness of Erwinia herbicola. Appl. Environ. Microbiol. 64(9): 3256–3263.
  • Celloto V.R., A.J.B. Oliveira, J.E. Gonçalves, C.S.F. Watanabe, G. Matioli and R.A.C. Gonçalves. 2012. Biosynthesis of Indole-3-acetic acid by new Klebsiella oxytoca Free and immobilized cells on inorganic matrices. The Scientific World J. 2012 doi:10.1100/2012/495970
  • Chapman E.J., K. Greenham, C. Castillejo, R. Sartor, A. Bialy, T-p. Sun and M. Estelle. 2012. Hypocotyl transcriptome reveals auxin regulation of growth-promoting genes through GA-dependent and-independent pathways. PLoS ONE. 7(5): e36210. doi:10.1371/ journal.pone.0036210
  • Chiu R.S., H. Nahal, N.J. Provart and S. Gazzarrini. 2012. The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature. BMC Plant Biol. 12(15). doi:10.1186/1471-2229-12-15.
  • Costigan S.E., S.N. Warnasooriya, B.A. Humphries and B.L. Montgomery. 2011. Root-localized phytochrome chromophore synthesis is required for photoregulation of root elongation and impacts root sensitivity to jasmonic acid in Arabidopsis. Plant Physiol. 157(3): 1138–1150.
  • Dempsey D.M.A., A.C. Vlot, M.C. Wildermuth and D.F. Klessig. 2011. Salicylic Acid biosynthesis and metabolism. In: The Arabidopsis Book. e0156. doi: 10.1199/tab.0156
  • Donner T.J., I. Sherr and E. Scarpella. 2010. Auxin signal transduction in Arabidopsis vein formation. Plant Signal. Behav. 5(1): 70–72.
  • Egorshina A.A., R.M. Khairullin, A.R. Sakhabutdinova and M.A. Luk’yantsev. 2012. Involvement of phytohormones in the development of interaction between wheat seedlings and endophytic Bacillus subtilis strain 11BM. Russ. J. Plant Physl. 59(1): 134–140.
  • Esitken A., H.E. Yildiz, S. Ercisli, M.F. Donmez, M. Turan and A. Gunes. 2010. Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown Strawberry. Sci. Hortic. 124: 62–66.
  • Facella P., L. Daddiego, G. Giuliano and G. Perrotta. 2012. Gibberellin and Auxin influence the diurnal transcription pattern of photoreceptor genes via CRY1a in tomato. PLoS ONE. 7(1): e30121. doi:10.1371/journal.pone.0030121
  • Fu J. and S. Wang. 2011. Insights into auxin signaling in plant-pathogen interactions. Front Plant Sci. 2: 1–7. doi: 10.3389/ fpls.2011.00074
  • Gao X., X. Lu, M. Wu, H. Zhang, R. Pan, J. Tian, S. Li and H. Liao. 2012. Co-inoculation with rhizobia and AMF inhibited soybean red crown rot: from field study to plant defense-related gene expression analysis. PloS ONE. 7(3): e33977. doi:10.1371/journal.pone.0033977
  • Giehl R.F.H., J.E. Limaand N. von Wiren. 2012. Localized iron supply triggers lateral root elongation in Arabidopsis by altering the aux1-mediated auxin distribution. Plant Cell. 24(1): 33–49.
  • Glick B.R. 1995. The enhancement of plant growth by free living bacteria. Can. J. Microbiology 41: 109–117.
  • Glick B.R., C. Liu, S. Ghosh and E.B. Dumbroff. 1997. Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biol. Biochem. 29(8): 1233–1239.
  • Glick B.R., D.M. Penrose and J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. theor. Biol. 190: 63–68.
  • Glick B.R. 2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiology. 251: 1–7.
  • Grant M.R. and J.D.G. Jones. 2009. Hormone (Dis) harmony moulds plant health and disease. Science 324: 750
  • Hartmann A., M. Schimid, D.V. Tuinen, G. Berg. 2009. Plant driven selection of microbes. Plant Soil. 321: 235–257.
  • Hopkins W.G. and N.P.A. Huner. 2004. Introduction to Plant Physiology. 3rd ed, John Wiley and Sons Inc., USA.
  • Jamil M., T. Charnikhova, B. Houshyania, A. Ast and H.J. Bouwmeester. 2012. Genetic variation in strigolactone production and tillering in rice and its effect on Striga hermonthica infection. Planta. 235(3): 473–484.
  • Kami C., M. Hersch, M. Trevisan, T. Genoud, A. Hiltbrunner, S. Bergmann and C. Fankhauser. 2012. Nuclear phytochrome a signaling promotes phototropism in Arabidopsis. Plant Cell. 24(2): 566–576.
  • Khan Z. and S.L. Doty. 2009. Characterization of bacterial endophytes of sweet potato plants. Plant Soil. 1–7. doi: 10.1007/ s11104-009-9908-1
  • Kiyohara S., H. Honda, N. Shimizu, C. Ejima, R. Hamasaki and S. Sawa. 2011. Tryptophan auxotroph mutants suppress the superroot2 phenotypes, modulating IAA biosynthesis in Arabidopsis. Plant Signal. Behav. 6(9):1351–1355.
  • Koltai H. 2011. Strigolactones’ ability to regulate root development may be executed by induction of the ethylene pathway. Plant Signal. Behav. 6(7): 1004–1005.
  • Kraiser T., D.E. Gras, A.G. Gutierrez, B. Gonzalez, and R.A. Gutierrez. 2011. A holistic view of nitrogen acquisition in plants. J. Exp. Bot. 62(4): 1455–1466.
  • Lim K-A., Z.H. Shamsuddin and C-L. Ho. 2010. Transcriptonic changes in the root of oil palm (Elaecis guineensis Jacq.) upon inoculation with Bacillus sphaericus UPMB10. Tree Genet. Genomes 6: 793–800.
  • Liu H., X. Li, J. Xiao and S. Wang. 2012. A convenient method for simultaneous quantification of multiple phytohormones and metabolites: application in study of rice-bacterium interaction. Plant Methods. 8(2): doi: 10.1186/1746-4811-8-2
  • Malusa E., L. Sas-Paszt and J. Ciesielska. 2012. Technologies for beneficial microorganisms inocula used as biofertilizers. The Scientific World J. 2012. doi:10.1100/2012/491206
  • Martinez-Morales L.J., L. Soto-Urzua, B.E. Baca, J.A. Sanchez- Ahedo. 2003. Indole-3-butyric acid (IBA) production in culture medium by wild strain Azospirillum brasilense. FEMS Microbiol. Lett. 228(2): 167–173.
  • Mehry A., M. Akbar and E. Giti. 2008. Colonization and nitrogenase activity of Triticum aestivum (cv. Baccross and Mahdavi) to the dual inoculation with Azospirillum brasilense and Rhizobium meliloti plus 2,4-D. Pak. J. Biol. Sci. 11(12): 1541–1550
  • Meldau D.G., H.H. Long and I.T. Baldwin. 2012. A native plant growth promoting bacterium, Bacillus sp. B55, rescues growth performance of an ethylene-insensitive plant genotype in nature. Front Plant Sci. 3 doi: 10.3389/fpls.2012.00112
  • Merzaeva D.V. and I.G. Shirokikh. 2010. The production of auxins by the endophytic bacteria of winter rye. Appl. Biochem. Microbiol. 46(1): 44–50.
  • Mia M.A.B. and Z.H. Shamsuddin. 2010. Rhizobium as a crop enhancer and biofertilizer for increased cereal production. Afr. J. Biotechnol. 9(37): 6001–6009.
  • Mia M.A.B., Z.H. Shamsuddin and M. Mahmood. 2010. Use of plant growth promoting bacteria in banana production: A new insight for sustainable banana production. Int. J. Agr. Biol. 12(3): 459–467.
  • Molina-Favero C., C.M. Creus, M. Simontachi, S. Puntarulo and L. Lamattina. 2008. Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant-Microbe Interact. 21(7): 1001–1009.
  • Morrone D., J. Chambers, L. Lowry, G. Kim, A. Anterola, K. Bender and R.J. Peters. 2009. Gibberellin biosynthesis in bacteria: Separate ent-copalyl diphosphate and ent-kaurene synthases in Bradyrhizobium japonicum. FEBS Letters. 583: 475–480
  • Muday G.K., A. Rahman and B.M. Binder. 2012. Auxin and ethylene: collaborators or competitors? Trends Plant Sci. 17(4): 181–195.
  • Müller M. and S. Munné-Bosch. 2011. Rapid and sensitive hormonal profiling of complex plant samples by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Plant Methods. 7(37) doi:10.1186/1746-4811-7-37.
  • Niklas K.J. and U. Kutschera. 2012. Plant Development, auxin, and the subsystem incompleteness theorem. Front Plant Sci. 3. doi: 10.3389/fpls.2012.00037
  • Ortiz‑Castro R., Valencia‑Cantero E. and J. Lopez‑Bucio. 2008. Plant growth promotion by Bacillus megaterium involves cytokinin signalling. Plant Signal. Behav. 3:4: 263–265.
  • Ouzari H., A. Khsairi, N. Raddadi, L. Jaoua, A. Hassen, M. Zarrouk, D. Daffonchio and A. Boudabous. 2008. Diversity of auxin-producing bacteria associated to Pseudomonas savastanoi- induced olive knots. J. Basic Microbiol. 48: 370–377.
  • Patil V. 2011. Production of indole aetic acid by Azotobacter sp. Recent Research Sci. Technol. 3(12): 14–16.
  • Patten C.L. and B.R. Glick. 2002. Role of Pseudomonas putida Indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68(8): 3795–3801.
  • Pierik R., T. Djakovic-Petrovic, D.H. Keuskamp, M. de Wit and A.C.J. Voesenek. 2009. Auxin and Ethylene regulate elongation responses to neighbor proximity signals independent of gibberellin and DELLA proteins in Arabidopsis. Plant Physiology. 149: 1701–1712.
  • Rajendran G., M.H. Patel and S.J. Joshi. 2012. Isolation and characterization of nodule-associated Exiguobacterium sp. from the root nodules of fenugreek (Trigonella foenum-graecum) and their possible role in plant growth promotion. Int. J. Microbiol. doi:10.1155/2012/693982
  • Remans R., S. Beebe, M. Blair, G. Manrique, E. Tovar, I. Rao, A. Croonenborghs, R. Torres-Gutierrez, M. El-Howeity, J. Michiels and J. Vanderleyden. 2008. Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.) Plant Soil. 302: 149–161
  • Robles L.M., S.D. Deslauriers, A.A. Alvarez and P.B. Larsen. 2012. A loss-of-function mutation in the nucleoporin AtNUP160 indicates that normal auxin signalling is required for a proper ethylene response in Arabidopsis. J. Exp. Bot. 63(5): 2231–2241.
  • Roy B.D., B. Deb and G.D. Sharma. 2010. Role of acetic acid bacteria in biological nitrogen fixation. Biofrontiers. 1(2): 83–98.
  • Ruzicka K., K. Ljung, S. Vanneste, R. Podhorska, T. Beeckman, J. Frimi and E. Benkova. 2007. Ethylene regulates root growth through effects on auxin distribution. Plant Cell. 19:2197–2212.
  • Sgroy V., F. Cassan, O. Masciarelli, M.F.D. Papa, A. Largares and V. Luna. 2009. Isolation and characterization of endophytic plant growth promoting (PGPB) or stress homoeostasis-regulating (PSHB) bacteria associated to the halophytes Prosopis strombulifera. Appl. Microbiol. Biotechnol. doi 10.1007/s00253-009-2116-3
  • Smith R.S. 2008. The role of auxin transport in plant patterning mechanism. PloS Biol. 6(12):2631–2633.
  • Stajkovic O., S.D. Meyer, B. Milicic, A. Willems and D. Delic. 2009. Isolation and characterization of endophytic non-rhizobial bacteria from root nodules of alfalfa (Medicago sativa L.). Bot. Serb. 33(1): 107–114.
  • Stewart J.L. and J.L. Nemhauser. 2010. Do trees grow on money? Auxin as the currency of the cellular economy. Cold Spring Harb Perspect Biol. 2. a001420. doi: 10.1101/cshperspect.a001420
  • Taiz L. and E. Zeiger. 2010. Plant Physiology fifth Edition. Sinauer Associates., Inc. 23 Plum tree Road, Sunderland, MA 01375, USA.
  • Tanimoto E. 2005. Regulation and root growth by plant hormones-roles for auxins and gibberellins. Critical Rev. Plant. Sci. 24: 249–265.
  • Teale W.D., F.A. Ditengou, A.D. Dovzhenko, X. Li, A.M. Molendijk, B. Ruperti, I. Paponov and Palme K. 2008. Auxin as a Model for the integration of hormonal signal processing and transduction. Molecular Plant. 1(2): 229–237.
  • Willige B.C., E. Isono, R. Richter, M. Zourelidou and C. Schwechheimer. 2011. Gibberellin regulates PIN-FORMED abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana. Plant Cell. 23: 2184–2195.
  • Won C., X. Shen, K. Mashiguchi, Z. Zheng, X. Dai, Y. Cheng, H. Kasahara, Y. Kamiya, J. Chory, Y. Zhao Y. 2011. Conversion of tryptophan to indole-3-acetic acid by tryptophan aminotransferases of Arabidopsis and YUCCAS in Arabidopsis. PNAS 108(45): 18518–18523.
  • Wu H-m., O. Hazak, A.Y. Cheung and S. Yalovsky. 2011. RAC/ ROP GTPases and auxin signaling. Plant Cell. 23: 1208–1218.
  • Zakharova E.A., Shcherbakov A.A., Brudnik V.V., Skripko N.G., Bulkhin N.S. and V.V. Ignatov. 1999. Biosynthesis of Indole-3-acetic acid in Azospirillum brasilense. Eur. J. Biochem. 259(3): 572–576.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-68b44caf-8b7e-4252-94bc-e410c8fe72af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.