PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 59 | 4 |
Tytuł artykułu

Calcium phosphate preservation of faecal bacterial negative moulds in hyaena coprolites

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The vertebrate fossil locality of La Roma 2, Spain (Upper Miocene, Late Vallesian, MN10) is characterised by a high abundance of mammalian coprolites, which provide direct clues to the diets and habitats of the organisms that produced them. X-ray diffraction analysis showed a sample of hyaena (cf. Lycyaena chaeretis) coprolites to be mostly composed of calcium phosphate. Ultrastructural SEM and TEM studies revealed three successive phases of preservation, including an initial phase of mineralisation that produced microspherulites within a very fine-grained cement. This indicates that most of the calcium phosphate present in the coprolites precipitated rapidly, which in turn facilitated the formation of negative moulds of faecal bacteria within the coprolite matrix.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
59
Numer
4
Opis fizyczny
p.997-1005,fig.,ref.
Twórcy
  • Fundacion Conjunto Paleontologico de Teruel-Dinopolis, 44002 Teruel, Spain
  • Museo Nacional de Ciencias Naturales, MNCN-CSIC, 28006 Madrid, Spain
  • Instituto de Ciencias Agrarias, ICA-CSIC, 28006 Madrid, Spain
autor
  • Fundacion Conjunto Paleontologico de Teruel-Dinopolis, 44002 Teruel, Spain
autor
  • Museo Nacional de Ciencias Naturales, MNCN-CSIC, 28006 Madrid, Spain
  • Museo Nacional de Ciencias Naturales, MNCN-CSIC, 28006 Madrid, Spain
Bibliografia
  • Alcalá, L. 1994. Macromamíferos neógenos de la fosa de Alfambra-Teruel. 554 pp. Instituto de Estudios Turolenses, Teruel.
  • Alcalá, L. and Morales, J. 1997. A primitive caprine from the Upper Vallesian of La Roma 2 (Alfambra, Teruel, Aragón, Spain). Comptes Rendu de l’Academie de Sciences, Paris 324: 947–953.
  • Alcalá, L., Morales, J., and Moyá, S. 1989–1990. El registro fósil neógeno de los bóvidos (Artiodactyla, Mammalia) de España. Paleontologia i Evolució 23: 67–73.
  • Alcalá, L., Pesquero, M.D., and Salesa, M. 2011. Hallazgo de hiracoideos en el área de Teruel. Nuevos datos sobre el Vallesiense de La Roma 2 (Alfambra). Paleontologia i Evolució, memoria special 5: 25–28.
  • Bon, C., Berthonaud, V., Maksud, F., Labadie, K., Poulain, J., Artiguenave, F., Wincker, P., Aury, J., and Elalouf, J. 2012. Coprolites as a source of information on the genome and dietof the cave hyena. Proceedings of The Royal Society B: Biological Sciences 279: 2825–2830.
  • Bradley, W.H. 1946. Coprolites from the Bridger Formation of Wyoming. Their composition and Microorganisms. American Journal of Science 244: 215–239.
  • Brasier, M.D. and Wacey, D. 2012. Fossils and astrobiology: new protocols for cell evolution in deep time. International Journal of Astrobiology 11: 217–228.
  • Briggs, D.E.G. 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Sciences 31: 275–301.
  • Briggs, D.E.G., Moore, R.A., Shultz, J.W., and Schweigert, G. 2005. Mineralization of soft-part anatomy and invading microbes in the horseshoe crab Mesolimulus from the Upper Jurassic Lagerstatte of Nusplingen, Germany. Proceedings of the Royal Society B 272: 627–632.
  • Busch, S., Dolhaine, H., DuChesne, A., Heinz, S., Hochrein, O., Laeri, F., Podebrad, O., Vietze, U., Weiland, T., and Kniep, R. 1999. Biomimetic morphogenesis of fluorapatite-gelatin composites: fractal growth, the question of intrinsic electric fields, core/shell assemblies, hollow spheres and reorganization of denatured collagen. European Journal of Inorganic Chemistry 1999: 1643–1653.
  • Carrion, J.S., Brink, J., Scott, L., and Binneman, J. 2000. Palynology of hyena coprolites from Oyster Bay, southeastern Cape coast, South Africa, the palaeo-environment of an open-air Howieson`s Poort occurrence. South African Journal of Science 96: 449–453.
  • Carrion, J.S., Riquelme, J.A, Navarro, C., and Munuera, M. 2001. Pollen in hyaena coprolites reflects late glacial landscape in southern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 176: 193–205.
  • Carrion, J.S., Scott, L., Arribas, A., Fuentes, N., Gil, G., and Montoya, E. 2007. Pleistocene landscapes in central Iberia inferred from pollen analysis of hyena coprolites. Journal of Quaternary Science 22: 191–202.
  • Cerdeño, E. and Alcalá, L. 1989. Aceratherium alfambrense n. sp., nuevo rinocerótido del Vallesiense superior de Teruel (España). Revista Española de Paleontología 4: 39–51.
  • Chin, K. 2007. Thin section analysis of lithified coprolites (fossil feces). Microscopy and Microanalysis 13: 504–505.
  • Chin, K., Eberth, D.A., Schweitzer, M.H., Rando, T.A., Sloboda, W.J., and Horner, J.R. 2003. Remarkable preservation of undigested muscle tissue within a Late Cretaceous tyrannosaurid coprolite from Alberta, Canada. Palaios 18: 286–294.
  • Clark, N.D.L. 1989. Carboniferous coprolitic bacteria from the Ardross Shrimp Bed, Fife. Scottish Journal of Geology 25: 99–104.
  • Farlow, J.O., Chin, K., Argast, A., and Poppy, S. 2010. Coprolites from The Pipe Creek Sonkhole (Late Neogene, Grant County, Indiana, U.S.A). Journal of Vertebrate Paleontology 30: 959–969.
  • Fernández-Jalvo, Y., Scott, L., Carrión, J.S., Gil-Romera, G., Brink, J., Neumann, F., and Rossouw, Ll. 2010. Pollen Taphonomy of hyaena coprolites: an experimental approach. In: E. Baquedano and J. Rosell (eds.), Actas de la 1ª Reunión de Científicos sobre cubiles de hiena (y otros grandes carnívoros) en los yacimientos arqueológicos de la Península Ibérica. Zona Arqueológica 13: 148–156.
  • Goth, K. 1990. Der Messeler Ölschiefer–Ein Algenlaminit. Courier Forschungsinstitut Senckenberg 131: 1–143.
  • Harrison, T. 2010. Coprolites: taphonomic and paleoecological implications. In: T. Harrison (ed.), Paleontology and Geology of Laetoli: Human Evolution in Context, Volume 1: Geology, Geochronology and Paleoecology and Paleoenvironment. 393 pp. Springer, Dordrecht.
  • Hollocher, T.C., Chin, K., Hollocher, K.T., and Kruge, M.A. 2001. Bacterial Residues in Coprolite of Herbivorous Dinosaurs: Role of Bacteria in Mineralization of Feces. Palaios 16: 547–565.
  • Hollocher, K.T., Hollocher, T.C., and Rigby, J.K. 2010. A phosphatic coprolite lacking diagenetic permineralization from the upper Cretaceous Hell Creek Formation, Northeastern Montana: importance of dietary calcium phosphate in preservation. Palaios 25: 132–140.
  • Kruuk, H. 1972. The Spotted Hyaena: A Study of Predation and Social Behaviour. 335 pp. University of Chicago Press, Chicago.
  • Kruuk, H. 1975. Hyaena. 80 pp. Oxford University Press, Oxford.
  • Larkin, N.R., Alexander, J., and Lewis, M.D. 2000. Using experimental studies of Recent faecal material to examine hyaena coprolites from the West Runton Freshwater Bed, Norfolk, U.K. Journal of Archaeological Science 27: 19–31.
  • Liebig, K. 1998. Fossil microorganisms from the Eocene Messel Oil Shale of Southern Hesse, Germany. Kaupia 7: 1–95.
  • Mills, M.G.L. 1990. Kalahari hyaenas: Comparative Behavioural Ecology of Two Species. 304 pp. Unwin Hyman, London.
  • Nowak, R.M. 2005. Walker’s Carnivores of the World. 323 pp. The Johns Hopkins University Press, Baltimore.
  • Northwood, C. 2005. Early Triassic coprolites from Australia and their Palaoobiological significance. Palaeontology 48: 49–68.
  • Pesquero, M.D., Alberdi, M.T., and Alcalá, L. 2006. New species of Hipparion from La Roma 2 (Late Vallesian, Teruel, Spain): a study of the morphological and biometric variability of Hipparion primigenium. Journal of Paleontology 80: 346–356.
  • Pesquero, M.D. and Alcalá, L. 2008. Taphonomy of the Miocene mammal site of La Roma 2 (Teruel, Spain) revisited. In: J. Aguirre, J.C. Braga, A.G. Checa, M. Company, and F.J. Rodríguez-Tovar (eds.), Taphos´08, Quinta reunión de Tafonomía y Fosilización, Third meeting on Taphonomy and Fossilization, 88–89. Instituto Geológico y Minero de España and Universidad de Granada, Universidad de Granada, Granada.
  • Pesquero, M.D., Salesa, M.J., Espílez, E., Mampel, L., Siliceo, G., and Alcalá, L. 2011. An exceptionally rich hyaena coprolites concentration in the Late Miocene mammal fossil site of La Roma 2 (Teruel, Spain): taphonomical and palaeoenvironmental inferences. Palaeogeography, Palaeoclimatology, Palaeoecology 311: 30–37.
  • Prasad, V., Strömberg, C.A.E., Alimohammadian, H., and Sahni, A. 2005. Paleontology: Dinosaur coprolites and the early evolution of grasses and grazers. Science 310: 1177–1180.
  • Sánchez, I.M., Domingo, M.S., and Morales, J. 2009. New data on the Moschidae (Mammalia, Ruminantia) from the Upper Miocene of Spain (MN10–MN11). Journal of Vertebrate Paleontology 29: 567–575.
  • Scott, L., Fernández-Jalvo, Y., Carrión, J., and Brink, J. 2003. Preservation and interpretation of pollen in hyaena coprolitos: taphonomic observations from Spain and southern Africa. Palaeontologia Africana 39: 83–91.
  • Schmitz-Münker, M. and Franzen, J. 1988. Die Rolle von Bakteren im Verdauungstrakt mitteleozäner Vertebraten und ihr Beitrag zur Fossildiagenese und Evolution. In: J.L. Franzen, and W. Michaelis (eds.), Der eozäne Messelsee–Eocene Lake Missal. Courier Forschungsinstitut Senckenberg 107: 129–146.
  • Toporski, J.K.W., Steele, A., Westall, F., Avci, R., Martill, D.M., and McKay, D.S. 2002. Morphologic and spectral investigation of exceptionally well-preserved bacterial biofilms from the Oligocene Enspel formation, Germany. Geochimica et Cosmochimica Acta 66: 1773–1791.
  • Turner, A., Antón, M., and Werdelin, L. 2008. Taxonomy and evolutionary patterns in the fossil Hyaenidae of Europe. Geobios 41: 677–687.
  • van Dam, J.A., Alcalá, L., Alonso Zarza, A.M., Calvo, J. P., Garcés, M., and Krijgsman, W. 2001. The Upper Miocene mammal record from the Teruel-Alfambra region (Spain): the MN system and continental Stage/Age concepts discussed. Journal of Vertebrate Paleontology 21: 367–385.
  • van der Made, J., Montoya, P., and Alcalá, L. 1992. Microstonyx (Suidae, Mammalia) from the Upper Miocene of Spain. Geobios 25: 395–413.
  • Villa, P., Goñi, M.F.S., Bescós, G.C., Grün, R., Ajas, A., and Pimienta, J.C.G. 2010. The archaeology and paleoenvironment of an Upper Pleistocene hyena den: an integrated approach. Journal of Achaeological Science 37: 919–935.
  • Werdelin, L. and Solounias, N. 1996. The evolutionary history of hyaenas in Europe and western Asia during the Miocene. In: R.L. Bernor, V. Fahlbusch, and S. Rietschel (eds.), Later Neogene European Biotic Evolution and Stratigraphic Correlation, 290–306. Columbia University Press, New York.
  • Yll, R., Carrión, J.S., Marra, A.C., and Bonfiglio, L. 2006. Vegetation reconstruction on the basis of pollen in Late Pleistocene hyena coprolites from San Teodoro Cave (Sicily, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 237: 32–39.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-68b3873d-6fed-4e4a-8f07-779b76e1cfcc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.