PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 10 |
Tytuł artykułu

Adventitious root cultures from leaf explants of Helicteres angustifolia L. as a novel source for production of natural bioactive compounds

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, adventitious roots of Helicteres angustifolia L. (H. angustifolia) were generated on Murashige and Skoog salt mixture (MS) medium with auxin and ascorbic acid as additives. The root initiation ratio reached 100% on MS medium supplemented with 3.0 mg/L NAA and 0.4 mg/L ascorbic acid at 28 °C. The root number reached 15 ± 2 per leaf explant with a length of 1.70 ± 0.52 cm. Moreover, the cultured roots exhibited similar functional groups with wild plant roots and produced abundant classes of phenolic secondary metabolites. The contents of total phenolics and flavonoids of the cultured roots reached 9.68 mg GAE/g and 25.66 mg RE/g, respectively. Compared to the wild plant roots, the cultured roots produced more gallic acid (1.97 ± 0.09 mg/g), catechol (0.17 ± 0.00 mg/g), caffeic acid (0.34 ± 0.01 mg/g), and quercetin (0.84 ± 0.02 mg/g). Additionally, the adventitious root extract showed dose-dependent antioxidant capability (IC₅₀ of DPPH = 4.10 ± 0.27 mg/mL, IC₅₀ of hydroxyl = 1.59 ± 0.07 mg/mL) and inhibition activities on rat intestinal maltase and sucrase (IC₅₀ of maltase = 5.66 ± 0.20 mg/mL, IC₅₀ of sucrase > 8.0 mg/mL). The adventitious root cultures are promising alternatives to produce bioactive phenolic compounds and functional foods of H. angustifolia.
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
41
Numer
10
Opis fizyczny
Article 171 [10p.], fig.,ref.
Twórcy
autor
  • Graduate School of Life and Environmental Sciences, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki 305‑8572, Japan
autor
  • Graduate School of Life and Environmental Sciences, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki 305‑8572, Japan
autor
  • Graduate School of Life and Environmental Sciences, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki 305‑8572, Japan
autor
  • Graduate School of Life and Environmental Sciences, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki 305‑8572, Japan
autor
  • College of Biopharmaceutical and Food Engineering, Shangluo University, Shangluo 726000, China
autor
  • Taisei Kogyo Co., Ltd, Minamiotsuka, Toshima‑ku, Tokyo, Japan
  • Kanglinda Biotechnology Co., Ltd, Yandu, Yancheng 224056, China
autor
  • Graduate School of Life and Environmental Sciences, University of Tsukuba, 1‑1‑1 Tennodai, Tsukuba, Ibaraki 305‑8572, Japan
Bibliografia
  • Baque MA, Moh SH, Lee EJ, Zhong JJ, Paek KY (2012) Production of biomass and useful compounds from adventitious roots of high-value added medicinal plants using bioreactor. Biotechnol Adv 30(6):1255–1267. https://doi.org/10.1016/j.biotechadv.2011.11.004
  • Bera SR, Saha S (2018) Biosynthesis and characterization of Thevetia peruviana leaf extract capped CdTe nanoparticles in photoconductive and photovoltaic applications. Mater Today Proc 5(2):3476–3485. https://doi.org/10.1016/j.matpr.2017.11.594
  • Chattopadhyay S, Farkya S, Srivastava AK, Bisaria VS (2002) Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnol Bioprocess Eng 7(3):138–149
  • Chen H, Yan X, Lin W, Zheng L, Zhang W (2004) A new method for screening a-glucosidase inhibitors and application to marine microorganisms. Pharm Biol 42(6):416–421. https://doi.org/10.1080/13880200490885987
  • Chen ND, Chen H, Li J, Sang MM, Ding S, Yu H (2015) Discrimination and similarity evaluation of tissue-cultured and wild Dendrobium species using Fourier transform infrared spectroscopy. J Mol Struct 1086:255–265. https://doi.org/10.1016/j.molstruc.2015.01.027
  • Chiu NY, Chang KS (1995) The illustrated medicinal plants of Taiwan. Southern Materials Center Inc., Taipei
  • Choi Y, Jeong HS, Lee J (2007) Antioxidant activity of methanolic extracts from some grains consumed in Korea. Food Chem 103(1):130–138. https://doi.org/10.1016/j.foodchem.2006.08.004
  • Corrêa LDR, Fett-Neto AG (2004) Effects of temperature on adventitious root development in microcuttings of Eucalyptus saligna Smith and Eucalyptus globulus Labill. J Therm Biol 29(6):315–324. https://doi.org/10.1016/j.jtherbio.2004.05.006
  • Dayal R, Singh A, Ojha RP, Mishra KP (2015) Possible therapeutic potential of Helicteres isora (L.) and it’s mechanism of action in diseases. J Med Plants Stud 3:95–100
  • De Melo JO, Pedrochi F, Baesso ML, Hernandes L, Truiti MCT, Baroni S, Bersani-Amado CA (2011) Evidence of deep percutaneous penetration associated with anti-inflammatory activity of topically applied Helicteres gardneriana extract: a photoacoustic spectroscopy study. Pharm Res 28(2):331–336
  • Ghosh PK, De TK, Maiti TK (2015) Ascorbic acid production in root, nodule and Enterobacter spp. (Gammaproteobacteria) isolated from root nodule of the legume Abrus precatorius L. Biocatal Agric Biotechnol 4(2):127–134. https://doi.org/10.1016/j.bcab.2014.11.006
  • Giri L, Dhyani P, Rawat S, Bhatt ID, Nandi SK, Rawal RS, Pande V (2012) In vitro production of phenolic compounds and antioxidant activity in callus suspension cultures of Habenaria edgeworthii: a rare Himalayan medicinal orchid. Ind Crops Prod 39:1–6. https://doi.org/10.1016/j.indcrop.2012.01.024
  • Grasel FDS, Ferrão MF, Wolf CR (2016) Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis. Spectrochim Acta A Mol Biomol Spectrosc 153:94–101. https://doi.org/10.1016/j.saa.2015.08.020
  • Harde PA, Shah MB (2017) Pharmacognostic studies and HPLC analysis of roots of Helicteres isora (L.). Pharmacogn J 9(4):523–527
  • Hu X, Cheng D, Zhang Z (2016) Antidiabetic activity of Helicteres angustifolia root. Pharm Biol 54(6):938–944. https://doi.org/10.3109/13880209.2015.1077871
  • Ikarashi N, Takeda R, Ito K, Ochiai W, Sugiyama K (2011) The inhibition of lipase and glucosidase activities by acacia polyphenol. Evid Based Complement Altern Med. https://doi.org/10.1093/ecam/neq043
  • Jain A, Sinha P, Desai NS (2014) Estimation of flavonoid, phenol content and antioxidant potential of Indian screw tree (Helicteres isora L.). Int J Pharm Sci Res 5(4):1320–1330
  • Jha AK, Prasad K, Kumar V, Prasad K (2009) Biosynthesis of silver nanoparticles using Eclipta leaf. Biotechnol Prog 25(5):1476–1479. https://doi.org/10.1002/btpr.233
  • Kerk NM, Feldman LJ (1995) A biochemical model for the initiation and maintenance of the quiescent center: implications for organization of root meristems. Development 121(9):2825–2833
  • Marinova D, Ribarova F, Atanassova M (2005) Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J Univ Chem Technol Metall 40(3):255–260
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Pawlaczyk I, Lewik-Tsirigotis M, Capek P, Matulova M, Sasinkova V, Dabrowski P, Witkiewicz W, Gancarz R (2013) Effects of extraction condition on structural features and anticoagulant activity of F. vesca L. conjugates. Carbohydr Polym 92(1):741–750. https://doi.org/10.1016/j.carbpol.2012.10.011
  • Peng Y, Wu Y, Li Y (2013) Development of tea extracts and chitosan composite films for active packaging materials. Int J Biol Macromol 59:282–289. https://doi.org/10.1016/j.ijbiomac.2013.04.019
  • Rao KJ, Paria S (2013) Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract. Mater Res Bull 48(2):628–634. https://doi.org/10.1016/j.materresbull.2012.11.035
  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20(2):101–153. https://doi.org/10.1016/S0734-9750(02)00007-1Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20(2):101–153. https://doi.org/10.1016/S0734-9750(02)00007-1
  • Sadiq MB, Hanpithakpong W, Tarning J, Anal AK (2015) Screening of phytochemicals and in vitro evaluation of antibacterial and antioxidant activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del. Ind Crops Prod 77:873–882. https://doi.org/10.1016/j.indcrop.2015.09.067
  • Sakulnarmrat K, Konczak I (2012) Composition of native Australian herbs polyphenolic-rich fractions and in vitro inhibitory activities against key enzymes relevant to metabolic syndrome. Food Chem 134(2):1011–1019. https://doi.org/10.1016/j.foodchem.2012.02.217
  • Sathis Kumar D, Raju SN, Harani A, Banji D, Rao KNV, Banji O (2009) Alpha-glucosidase inhibitory and hypoglycemic activities of physalis minima extract. Pharmacogn J 1(4):273–278
  • Shibano M, Kakutani K, Taniguchi M, Yasuda M, Baba K (2008) Antioxidant constituents in the dayflower (Commelina communis L.) and their α-glucosidase-inhibitory activity. J Nat Med 62(3):349–353
  • Shiga T, Shoji K, Shimada H, Hashida SN, Goto F, Yoshihara T (2009) Effect of light quality on rosmarinic acid content and antioxidant activity of sweet basil, Ocimum basilicum L. Plant Biotechnol 26(2):255–259. https://doi.org/10.5511/plantbiotechnology.26.255
  • Shu YT, Kao KT, Weng CS (2017) In vitro antibacterial and cytotoxic activities of plasma-modified polyethylene terephthalate nonwoven dressing with aqueous extract of Rhizome Atractylodes macrocephala. Mater Sci Eng C Mater Biol Appl 77:606–612. https://doi.org/10.1016/j.msec.2017.03.291
  • Siu KC, Xu L, Chen X, Wu JY (2016) Molecular properties and antioxidant activities of polysaccharides isolated from alkaline extract of wild Armillaria ostoyae mushrooms. Carbohydr Polym 137:739–746. https://doi.org/10.1016/j.carbpol.2015.05.061
  • Sivakumar G (2006) Bioreactor technology: a novel industrial tool for high-tech production of bioactive molecules and biopharmaceuticals from plant roots. Biotechnol J Healthc Nutr Technol 1(12):1419–1427. https://doi.org/10.1002/biot.200600117
  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28(4):1057–1060. https://doi.org/10.1016/0031-9422(89)80182-7
  • Soto R, Freer J, Baeza J (2005) Evidence of chemical reactions between di-and poly-glycidyl ether resins and tannins isolated from Pinus radiata D. Don bark. Bioresour Technol 96(1):95–101. https://doi.org/10.1016/j.biortech.2003.05.006
  • Stratmann B, Tschoepe D (2009) Atherogenesis and atherothrombosis–focus on diabetes mellitus. Best Pract Res Clin Endocrinol Metab 23(3):291–303. https://doi.org/10.1016/j.beem.2008.12.004
  • Suzuki YA, Murata Y, Inui H, Sugiura M, Nakano Y (2005) Triterpene glycosides of Siraitia grosvenori inhibit rat intestinal maltase and suppress the rise in blood glucose level after a single oral administration of maltose in rats. J Agric Food Chem 53(8):2941–2946
  • Truiti M, Ferreira I, Zamuner M, Nakamura C, Sarragiotto M, Souza M (2005) Antiprotozoal and molluscicidal activities of five Brazilian plants. Braz J Med Biol Res 38(12):1873–1878. https://doi.org/10.1590/S0100-879X2005001200016
  • Venkatesh S, Laxmi KS, Reddy BM, Ramesh M (2007) Antinociceptive activity of Helicteres isora. Fitoterapia 78(2):146–148. https://doi.org/10.1016/j.fitote.2006.09.024
  • Yang X, Lei Z, Yu Y, Xiao L, Cheng D, Zhang Z (2019) Phytochemical characteristics of callus suspension culture of Helicteres angustifolia L. and its in vitro antioxidant, antidiabetic and immunomodulatory activities. S Afr J Bot 121:178–185. https://doi.org/10.1016/j.sajb.2018.11.006
  • Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, Li HB (2015) Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 20(12):21138–21156. https://doi.org/10.3390/molecules201219753
  • Zou Y, Liao S, Shen W, Liu F, Tang C, Chen CYO, Sun Y (2012) Phenolics and antioxidant activity of mulberry leaves depend on cultivar and harvest month in Southern China. Int J Mol Sci 13(12):16544–16553
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-68a9aad1-5754-4c9e-909c-9dc1a52a96eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.