PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2014 | 67 | 4 |

Tytuł artykułu

Effects of cytokinins on antioxidant enzymes in in vitro grown shoots of Pelargonium hortorum L. H. Bayley

Treść / Zawartość

Warianty tytułu

PL
Wpływ cytokinin na aktywność enzymów antyoksydacyjnych u Pelargonium hortorum L. H. Bayley w warunkach in vitro

Języki publikacji

EN

Abstrakty

EN
The aim of this study was to determine the influence of meta-topolin (mT) and 6-benzyl-aminopurine (BAP) on the hydrogen peroxide (H2O2) level and antioxidant enzymes activities in relation to the shoot formation and senescence process in Pelargonium hortorum cultivars, which differ in their susceptibility to leaf yellowing under in vitro conditions. In an early senescing cultivar ‘Grand Prix’, the addition of an aromatic cytokinin mT to abscisic acid (ABA)-enriched Murashige and Skoog (MS) basal medium more efficiently inhibited leaf yellowing than BAP. In both genotypes, meta-topolin was also the most effective in shoot formation. It was found that Pelargonium species varying in their susceptibility to senescence differ in H2O2 production and antioxidant enzymes activities. Generally, meta-topolin more effectively enhanced H2O2 production and POD activity than BAP and control medium, but its effect depended on genotype. The highest H2O2 production stimulated by mT was observed on day 5 of subculture in late senescing cv. ‘Bergpalais’. In both geranium genotypes, superoxide dismutase (SOD) and catalase (CAT) levels were highest at the beginning of the subculture period, during the initiation of shoot formation. SOD showed the highest activity on day 5 of subculture on the medium without cytokinin and generally being higher in cv. ‘Bergpalais’ than in cv. ‘Grand Prix’. CAT activity was positively regulated by both cytokinins. POD activity was most effectively enhanced by mT, but on different days of subculture - on the 2nd day of subculture in cv. ‘Bergpalais’ and on the 22nd day of subculture in cv. ‘Grand Prix’. The enhanced activity of POD in the presence of mT, 4-fold higher than on control medium, at the end of subculture in P. hortorum ‘Grand Prix’ coincided with the inhibition of leaf senescence.
PL
Badano wpływ cytokinin (mT i BAP) na tworzenie H2O2 i aktywność enzymów antyoksydacyjnych – dysmutazy ponadtlenkowej (SOD), katalazy (CAT) i peroksydaz (POD) w procesie tworzenia i starzenia pędów in vitro u odmiany pelargonii rabatowej wolno ( Bergpalais’) i szybko starzejącej się ( ‚ Grand Prix’). U obydwu odmian najwyższy współczynnik mnożenia pędów i ich jakość uzyskano w obecności mT. Przy łącznym podaniu z ABA, mT znacząco obniżała żółknięcie liści u odmiany ‚ Grand Prix’. Odmiany pelargonii różniły się zdolnością do akumulacji H2O2 i aktywnością enzymów antyoksydacyjnych, a ważnym czynnikiem wpływającym na ich poziom była cytokinina, głównie mT. W obecności meta-topoliny obserwowano najwyższą produkcję H2O2 w 5. dniu pasażu u odmiany Bergpalais’ i najwyższą aktywność POD u obydwu odmian, przy czym u odmiany ‚Bergpalais’ na początku pasażu a u odmiany ‚ Grand Prix’ w 22. dniu pasażu. U odmiany szybko starzejącej się, wzrost aktywności POD w obecności meta-topoliny, czterokrotnie wyższy w porównaniu z pożywką bez cytokininy był zbieżny z opóźnionym starzeniem pędów. U obydwu odmian, aktywność SOD i CAT była najwyższa na początku pasażu, w czasie indukcji tworzenia pędów. Najwyższy poziom SOD obserwowano na pożywce bez cytokininy, natomiast CAT pod wpływem cytokininy, zarówno mT jak i BAP. Sugeruje się, iż indukowana w obecności meta-topoliny produkcja H2O2 i aktywność POD mogą odgrywać istotną rolę w procesie tworzenia i starzenia pędów Pelargonium in vitro.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

67

Numer

4

Opis fizyczny

p.33-41,fig.,ref.

Twórcy

autor
  • Research Institute of Horticulture, Skierniewice, Poland
autor
  • The F. Gorski Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland

Bibliografia

  • Wojtania A, Węgrzynowicz-Lesiak E. Ethylene and cytokinin interaction in the morphogenesis of Pelargonium × hortorum L.H. Bailey in vitro. Acta Physiol Plant. 2012; 34(6): 2407–2412. http://dx.doi.org/10.1007/s11738-012-1005-z
  • Wojtania A, Gabryszewska E. Effect of cytokinins and amino acids on multiplication of Pelargonium cultivars. Acta Soc Bot Pol. 2001; 70(3): 203–207. http://dx.doi.org/10.5586/asbp.2001.026
  • Wojtania A. Effect of Meta-topolin on in vitro propagation of Pelargonium × hortorum and Pelargonium × hederaefolium cultivars. Acta Soc Bot Pol. 2010; 79(2): 101–106. http://dx.doi.org/10.5586/asbp.2010.013
  • Lim PO, Kim HJ, Gil Nam H. Leaf senescence. Ann Rev Plant Biol. 2007; 58(1): 115–136. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105316
  • Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010; 48(12): 909–930. http://dx.doi.org/10.1016/j.plaphy.2010.08.016
  • Cassells AC, Curry RF. Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tiss Organ Cult. 2001; 64(2-3): 145–157. http://dx.doi.org/10.1023/A:1010692104861
  • Joyce SM, Cassells AC, Jain SM. Stress and aberrant phenotypes in vitro culture. Plant Cell Tiss Organ Cult. 2003; 74(2): 103–121. http://dx.doi.org/10.1023/A:1023911927116
  • Alscher RG, Donahue JL, Cramer CL. Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant. 1997; 100(2): 224–233. http://dx.doi.org/10.1111/j.1399-3054.1997.tb04778.x
  • Synkova H, Semoradova S, Schnablova R, Witters E, Husak M, Valcke R. 09 - Cytokinin-induced activity of antioxidant enzymes in transgenic Pssu-ipt tobacco during plant ontogeny. Biol Plant. 2006; 50(1): 31–41. http://dx.doi.org/10.1007/s10535-005-0071-0
  • Mýtinová Z, Motyka V, Haisel D, Lubovská Z, Trávníčková A, Dobrev P, et al. Antioxidant enzymatic protection during tobacco leaf ageing is affected by cytokinin depletion. Plant Growth Regul. 2011; 65(1): 23–34. http://dx.doi.org/10.1007/s10725-011-9571-4
  • Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962; 15(3): 473–497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Ishikawa T, Takeda T, Shigeoka S, Hirayama O, Mitsunaga T. Hydrogen peroxide generation in organelles of Euglena gracilis. Phytochemistry. 1993; 33(6): 1297–1299. http://dx.doi.org/10.1016/0031-9422(93)85078-6
  • Lück H. Methoden der enzymatischen Analyse. In: Bergmeyer HU, editor. . Weinheim: Verlag Chemie; 1962. p. 885–894.
  • Aebi H. Catalase in vitro. Meth Enzym. 1984; 105: 121–126.
  • McCord JM, Fridovich I. Superoxide dismutase an enzimic function for erytrocuperein (hemocuperein). J Biol Chem. 1969; 244: 6049–6055.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72(1-2): 248–254. http://dx.doi.org/10.1016/0003-2697(76)90527-3
  • Yang J, Zhang J, Wang Z, Zhu Q, Liu L. Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Planta. 2002; 215(4): 645–652. http://dx.doi.org/10.1007/s00425-002-0789-2
  • Gaspar T, Franck T, Bisbis B, Kevers C, Jouve L, Hausman JF, et al. Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul. 2002; 37(3): 263–285. http://dx.doi.org/10.1023/A:1020835304842
  • Desjardins Y, Dubuc JF, Badr A. In vitro culture of plants: a stressful activity. Acta Hort. 2009; 812: 29–50.
  • Kukavica B, Jovanovic SV. Senescence-related changes in the antioxidant status of ginkgo and birch leaves during autumn yellowing. Physiol Plant. 2004; 122(3): 321–327. http://dx.doi.org/10.1111/j.1399-3054.2004.00410.x
  • Gupta SD, Datta S. Antioxidant enzyme activities during in vitro morphogenesis of gladiolus and the effect of application of antioxidants on plant regeneration. Biol Plant. 2004; 47(2): 179–183. http://dx.doi.org/10.1023/B:BIOP.0000022248.62869.c7
  • Tian M, Gu Q, Zhu M. The involvement of hydrogen peroxide and antioxidant enzymes in the process of shoot organogenesis of strawberry callus. Plant Sci. 2003; 165(4): 701–707. http://dx.doi.org/10.1016/S0168-9452(03)00224-3
  • Skrzypek E, Szechyńska-Hebda M, Dąbrowska G. Zmiany aktywności enzymów antyoksydacyjnych podczas regeneracji kalusa bobiku (Vicia faba L. minor). Zesz Probl Post Nauk Rol. 2007; 53: 213–221.
  • Tang W, Newton RJ. Peroxidase and catalase activities are involved in direct adventitious shoot formation induced by thidiazuron in eastern white pine (Pinus strobus L.) zygotic embryos. Plant Physiol Biochem. 2005; 43(8): 760–769. http://dx.doi.org/10.1016/j.plaphy.2005.05.008
  • Jordi W, Schapendonk A, Davelaar E, Stoopen GM, Pot CS, de Visser R, et al. Increased cytokinin levels in transgenic PSAG12-IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning. Plant Cell Env. 2000; 23(3): 279–289. http://dx.doi.org/10.1046/j.1365-3040.2000.00544.x
  • Holub J, Hanuš J, Hanke DE, Strnad M. Biological activity of cytokinins derived from Ortho- and Meta-Hydroxybenzyladenine. Plant Growth Regul. 1998; 26(2): 109–115. http://dx.doi.org/10.1023/A:1006192619432
  • Palavan-Ünsal N, Çağ S, Çetin E. The role of meta-topolin in senescence of wheat leaf segments. J. Cell Mol. Biol. 2004; 3: 23–31.
  • Cağ S, Palavan-Ünsal N. The effect of meta-topolin on protein profile in radish cotyledons. J Cell Mol Biol. 2003; 2: 31–34.
  • Baroja-Fernández E, Aguirreolea J, Martínková H, Hanuš J, Strnad M. Aromatic cytokinins in micropropagated potato plants. Plant Physiol Biochem. 2002; 40(3): 217–224. http://dx.doi.org/10.1016/S0981-9428(02)01362-1
  • Hunk PD, Yu CW, Lin CH. Hydrogen peroxide functions as a stress signal in plants. Bot Bull Acad Sin. 2005; 45: 1–10.
  • Hare PD, Cress WA, van Staden J. The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul. 1997; 23(1-2): 79–103. http://dx.doi.org/10.1023/A:1005954525087
  • Murch SJ, KrishnaRaj S, Saxena PK. Thidiazuron-induced morphogenesis of Regal geranium (Pelargonium domesticum): a potential stress response. Physiol Plant. 1997; 101(1): 183–191. http://dx.doi.org/10.1111/j.1399-3054.1997.tb01835.x
  • Casano LM, Martin M, Sabater B. Sensitivity of superoxide dismutase transcript levels and activities to oxidative stress is lower in mature-senescent than in young barley leaves. Plant Physiol. 1994; 106(3): 1033–1039. http://dx.doi.org/10.1104/pp.106.3.1033
  • Passardi F, Cosio C, Penel C, Dunand C. Peroxidases have more functions than a Swiss army knife. Plant Cell Rep. 2005; 24(5): 255–265. http://dx.doi.org/10.1007/s00299-005-0972-6
  • Kukavica B, Jovanovic SV. Senescence-related changes in the antioxidant status of ginkgo and birch leaves during autumn yellowing. Physiol Plant. 2004; 122(3): 321–327. http://dx.doi.org/10.1111/j.1399-3054.2004.00410.x
  • Mitrović A, Janošević D, Budimir S, Bogdanović Pristov J. Changes in antioxidative enzymes activities during Tacitus bellus direct shoot organogenesis. Biol Plant. 2012; 56(2): 357–361. http://dx.doi.org/10.1007/s10535-012-0098-y

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-68608051-bfd6-41a2-b144-bbda2bbc350f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.