PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 5 |

Tytuł artykułu

The responses of stomatal parameters and SPAD value in Asian tobacco exposed to chromium

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this study, the responses of Asian tobacco varieties to chromium stress were investigated. To determine the responses arising from genotypic differences, Basma and Dubek varities were used. Basma was suitable for removing Cr from soil and was more tolerant than Dubek to chromium stress. A significant variation in stomatal characters, except for stomatal width, was observed in both varieties. In parallel with the increasing doses of Cr, stomata density significantly increased in both genotypes. Also, it was observed that stomatal length decreased with increases in Cr dosage. The increase in Cr concentration leads to decrease in SPAD value. It was observed that the SPAD value of Basma was more than Dubek in control plants. The correlation of stomatal parameters with each other and SPAD values were also calculated. A negative correlation was found between the SPAD value and stoma density in both varieties. Also, a positive correlation was observed between SPAD value and stomatal length. There was a significant negative correlation between stoma density and stomatal length.

Wydawca

-

Rocznik

Tom

22

Numer

5

Opis fizyczny

p.1441-1447,fig.,ref.

Twórcy

autor
  • Department of Field Crops, Faculty of Agriculture, Ege University, Bornova, Izmir 35100, Turkey
autor
  • Department of Field Crops, Faculty of Agriculture, Ege University, Bornova, Izmir 35100, Turkey
  • Department of Agricultural Machinery, Faculty of Agriculture, Ege University, Bornova, İzmir 35100, Turkey

Bibliografia

  • 1. SANITA DI TOPPI L., GABRIELLI R. Response to cadmium in higher plants. Environ. Exp. Bot. 41, 105, 1999.
  • 2. PINTO A. P., MOTA A. M., VARENNES A., PINTO F. C. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci. Total Environ. 326, 239, 2004.
  • 3. SHARMA P., DUBEY R. S. Lead toxicity in plants. Braz. J. Plant Physiol. 17, (1), 35, 2005.
  • 4. WANG S., GUO S., LI J., HU X., JIAO Y. Effects of salt stress on the root growth and leaf water use efficiency of cucumber seedlings. Pub. Med. 17, (10), 1883, 2006.
  • 5. SHANKER A. K., CERVANTES C., LOZA-TAVERA H., AVUDAINAYAGAM S. Chromium toxicity in plants. Environ. Int. 31, 739, 2005.
  • 6. PANDA S. K., CHOUDHURY S. Chromium stress in plants. Braz. J. Plant Physiol. 17, 95, 2005.
  • 7. SAMANTARAY S., ROUT G. R., DAS P. Induction, selection and characterization of Cr and Ni-tolerant cell lines of Echinochloa colona (L). in vitro. J. Plant Physiol. 158, 1281, 2001.
  • 8. SAMANTARAY S. Biochemical responses of Cr-tolerant and Cr-sensitive mung bean cultivars grown on varying levels of chromium. Chemosphere. 47, 1065, 2002.
  • 9. PANDA S. K. Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. J. Plant Physiol. 164, 1419, 2007.
  • 10. VERNAY P., GAUTHIER-MOUSSARD C., JEAN L., BORDAS F., FAURE O., LEDOIGT G., HITMI A. Effect of chromium species on phytochemical and physiological parameters in Datura innoxia. Chemosphere. 72, 763, 2008.
  • 11. MATZNER S., COMSTOCK J. The temperature dependence of shoot hydraulic resistance: implications for stomatal behaviour and hydraulic limitation, Plant Cell Environ. 24, 1299, 2001.
  • 12. IKKONEN E. N., SHIBAEVA T. G., SYSOEVA M. I. SHERUDILO E. G. Stomatal conductance in Cucumis sativus upon short-term and long-term exposures to low temperatures. Russ. J. Plant Physiol. 59, (5), 696, 2012.
  • 13. ASSMANN S. M., WANG X. Q. From milliseconds to millions of years: guard cells and environmental responses. Curr. Opin. Plant Biol. 4, 421, 2001.
  • 14. DAVIES W. J., ZHANG J. Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 55, 1991.
  • 15. WILKINSON S., DAVIES W. J. ABA-based chemical signaling: the coordination of responses to stress in plants. Plant Cell Environ. 25, 195, 2002.
  • 16. DAVIES W. J., KUDOYAROVA G., HARTUNG W. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant's response to drought. J. Plant Growth Regul. 24, 285, 2005.
  • 17. XU Z., ZHOU G. Responses of leaf to water status and its relationship with photosynthesis in a grass. J. Exp. Bot. 59, (12), 3317, 2008.
  • 18. YANG H. M., WANG G. X. Leaf stomatal densities and distribution in Triticum aestivum under drought and CO₂ enrichment. Acta Phytoecologica Sinica. 25, 312, 2001.
  • 19. ZHANG Y. P., WANG Z. M., WU Y. C., ZHANG X. Stomatal characteristics of different green organs in wheat under different irrigation regimes. Acta Agron. Sinica 32, 70, 2006.
  • 20. QUARRIE S. A., JONES H. G. Effects of abscistic acid and water stress on development and morphology of wheat. J. Exp. Bot. 28, 192, 1977.
  • 21. SPENCE R. D., WU H., SHARPE P. J. H., CLARK K. G. Water stress effects on guard cell anatomy and the mechanical advantage of the epidermal cells. Plant Cell Environ. 9, 197, 1986.
  • 22. KOVAČEVIĆ G., KASTORI R., MERKULOV L. Dry matter and leaf structure in young wheat plants as affected by cadmium, lead, and nickel. Biol. Plantarum. 42, 119, 1999.
  • 23. PAPADAKIS I. E., GIANNAKOULA A., THERIOS I. N., BOSABALIDIS A. M., MOUSTAKAS M., NASTOU A. Mn-induced changes in leaf structure and chloroplast. J. Plant. Physiol. 164, (1), 100, 2007.
  • 24. SHI G. R. CAI Q. S. Photosynthetic and anatomic responses of peanut leaves to zinc stress. Biol. Plantarum. 53, (2), 391, 2009.
  • 25. SOUSA T. A., OLIVEIRA M. T., PEREIRA J. M. Physiological indicators of plant water status of irrigated and non-irrigated grapevines grown in a low rainfall area of Portugal. Plant Soil. 282, 127, 2006.
  • 26. GUDESBLAT G. E., IUSEM N. D., MORRIS P. C. Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New Phytol. 173, 713, 2007.
  • 27. FOYER C., FURBANK R., HARBINSON J., HORTON P. The mechanisms contributing to photosynthetic control of electron transport by carbon. Photosynth Res. 25, (2), 83, 1990.
  • 28. KRAUSE G. H., WEIS E. Chlorophyll fluorescence and photosynthesis. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 42, 313, 1991.
  • 29. GOVINDJEE R. Sixth-three years since Kautsky: Chlorophyll a fluorescence, Aust. J. Plant. 22, 131, 1995.
  • 30. DONG J., WU F., ZHANG G. Effect of cadmium on growth and photosynthesis of tomato seedlings. J. Zhejiang. Univ. Sci. B. 6, (10), 974, 2005.
  • 31. SCHREIBER U. Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer. J. Amesz, A.J. Hoff and H.J. Van Gorkum. Curr. top photosynth. pp. 261-272, 1986.
  • 32. OSMOND B., SCHWARTZ O., GUNNING B. Photoinhibitory printing on leaves, visualized by chlorophyll fluorescence imaging and confocal microscopy, is due to diminished fluorescence from grana. Aust. J. Plant Physiol. 26, 717, 1999.
  • 33. SHUBHRA, DAYAL J., GOSWAMI C. L., MUNJAL R. Influence of phosphorus application on water relationsi biochemical parameters and gum content in cluster bean under water deficit. Biol. Plantarum. 48, (3), 445, 2004.
  • 34. MISHRA S. K., TRIPP J., WINKELHAUS S. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermo tolerance in tomato. Genes & Development. 16, 1555, 2002.
  • 35. KUO C. G., SHEN B. J., CHEN H. M. H., CHEN C. OPENA R. T. Associations between heat tolerance, water consumption, and morphological characters in Chinese cabbage. Euphytica. 39, (1), 65, 1988.
  • 36. MALONE S. R., MAYEUX H. S., JOHNSON H. B., POLLEY, H. W. Stomatal density and aperture length in four plant species grown across a subambient CO₂ gradient. Amer. J. Bot. 80, 1413, 1993.
  • 37. MAHERALI H., REID, C. D., POLLEY H. W., JOHNSON H. B., JACHSON R. B. Stomatal acclimation over a subambient to elevated CO₂ gradient in a C3/C4 grassland. Plant Cell Environ. 25, 557, 2002.
  • 38. RADOGLOU K. M., JARVIS P. G. Effects of CO₂ enrichment on four poplar clones. II. Leaf surface properties. Ann. Bot. 65, 627, 1990.
  • 39. WANG H., SHI H., YANG R., LIU J., YU Y. Stomatal characteristics of greening plant species in response to different urban atmospheric environments in Xi’an, China. J. Food Agric. Environ. 10, (3&4), 1524, 2012.
  • 40. WOOD C. W., REEVES D. W., HIMELRICK D. G. Relationships between chlorophyll meter readings and leaf chlorophyll concentration, N status, and crop yield: A review. Proceedings Agronomy Society of New Zealand. 23, 1, 1993.
  • 41. MARKWELL J., OSTERMAN J. C., MITCHELL J. L. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth. Res. 46, 467, 1995.
  • 42. HTAY O., TAKUYA A., FUMITAKE K. Effects of Drought and Flooding Stresses on Growth and Photosynthetic Activity of Mungbean (Vigna radiata L.) Wilczek, Cultivars. J. Fac. Agr. Kyushu Univ. 50, (2), 533, 2005.
  • 43. KUO S., HUANG B., BEMBENEK R. The availability to lettuce of zinc and cadmium in a zinc fertilizer. Soil Sci. 169, (5), 363, 2004.
  • 44. LABATE J. A., GRANDILLO S., FULTON T. M., MUNOS S., CAICEDO A., PERALTA IE. J .I. Y., CHETELAT R. Tomato In Genome mapping and molecular breeding in plants. C. Kole. Springer Publishing. New York. 5, 1, 2007.
  • 45. SCHULZE XU. Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil. Annu. Rev. Plant Physiol. 37, 247, 1986.
  • 46. MORIANA A., FERERES E. Plant indicators for scheduling irrigation of young olive trees. Irrig Sci. 21, 83, 2002.
  • 47. YANG J. JONATHAN W. ZHU Q., PENG Z. Effect of water deficit stress on the stomatal frequency, stomatal conductance and abscisic acid in rice leaves. Acta. Agron. Sinica. 21, 533, 1995.
  • 48. MENG L., LI L., CHEN W., XU Z., LIU L. Effect of water stress on, length, width and net photosynthetic rate in rice leaves. J. Shenyang Agric. Univ. 30, 477, 1999.
  • 49. LIU S., LIU J., CAO J., BAI C., SHI R. Stomatal distribution and character analysis of leaf epidermis of jujube under drought stress. J. Anhui. Agric. Sci. 34, 1315, 2006.
  • 50. DALIL B., GHASSEMI-GOLEZANI K., MOGHADDAM M., RAEY Y. Effects of seed viability and water supply on leaf chlorophyll content and grain yield of maize (Zea mays). J. Food Agric. Environ. 8, (3&4), 399, 2010.
  • 51. KARIPCIN M. Z. Determination of drought tolerance on wild and domestic watermelon genotypes. Phd thesis, Department of Horticulture Institute of Natural and Applied Sciences University of Çukurova, 2009.
  • 52. ZHANG H. WANG X., WANG S. A study on stomatal traits of Platanus acerifolia under urban stress. J. Fudan Univ. 43, 651, 2004.
  • 53. FRANKS P. J., BEERLING D. J. Maximum leaf conductance driven by CO₂ effects ons tomatal size and density over geologic time. PNAS 106, 10343, 2009.
  • 54. MARTINEZ J. P., SILVA H., LEDENT J. F., PINTO M. Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). Eur. J. Agron. 26, 30, 2007.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-68285cd7-d7ad-4459-b3a5-66279d1e7b3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.