PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 1 |

Tytuł artykułu

Metal uptake in reeds from ‘Flowback’ fluids

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Flowback fluids from the hydraulic fracturing process that contain high levels of metals may pose environmental risks. This laboratory study investigated the remediation potential of Phragmites australis to sequester Ba and Sr from flowback liquids. The results indicated that reeds can uptake different concentrations of Ba and Sr from solutions. Roots were the main tissues for metal storage, with 12.26±0.58 mg/g Ba and 2.92±0.12 mg/g Sr sequestered in roots from solutions that contained 80 mg/L Ba and 20 mg/L Sr. The more metals in solutions, the more metals that entered the biomass. Reed, which possesses strong adaptability to different conditions and environments, is a good candidate to clean heavy metal-contaminated water or soil via phytoremediation. Field research on metal accumulation in reeds cultured in flowback liquids is needed to further prove its potential to in situ remediation of a heavy metal-contaminated environment.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

1

Opis fizyczny

p.231-236,fig.,ref.

Twórcy

autor
  • Department of Biological and Environmental Sciences, Texas A&M University-Commerce, TX, USA, 75428
autor
  • Department of Biological and Environmental Sciences, Texas A&M University-Commerce, TX, USA, 75428
autor
  • Department of Biological and Environmental Sciences, Texas A&M University-Commerce, TX, USA, 75428
autor
  • Department of Chemistry, Texas A&M University-Commerce, TX, USA, 75428
autor
  • Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China, 100101

Bibliografia

  • 1. VENGOSH A., JACKSON R.B., WARNER N., DARRAH T.H., KONDASH A. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ. Sci. Technol. 48, 8334, 2014.
  • 2. ENVIRONMENTAL PROTECTION AGENCY (EPA). Assessment of the potential impacts of hydraulic fracturing for oil and gas on drinking water resources EPA/600/R-15/047a, 2015.
  • 3. BURTON G.A., BASU N., ELLIS R., KAPO K.E., ENTREKIN S., NASWLHOFFER K. Hydraulic ‹Fracking›: are surface water impacts an ecological concern? Environ. Toxicol. Chem. 33, 1679, 2014.
  • 4. BALABA R.S., SMART R.B. Total arsenic and selenium analysis in Marcellus shale, high-salinity water, and hydrofracture flowback wastewater. Chemosphere 89, 1437, 2012
  • 5. CHAPMAN E.C., CAPO R.C., STEWART B.W., KIRBY C.S., HAMMACK R.W., SCHROEDER K.T., EDENBORN H.M. Geochemical and strontium isotope characterization of produced waters from marcellus shale natural gas extraction. Environ. Sci. Technol. 46, 3545, 2012.
  • 6. CLARK C.E., VEIL J.A. Produced water volumes and management practices in the United States (ANL/EVS/R-09/1). Argonne IL, Argonne National Laboratory, 2009.
  • 7. FERRAR K.J., MICHANOWICZ D.R., CHRISTEN C.L., MULCAHY N., MALONE, S.L., SHARMA R.K. Assessment of effluent contaminants from three facilities discharging marcellus shale wastewater to surface waters in Pennsylvania. Environ. Sci. Technol. 47, 3472, 2013.
  • 8. GHOSH S., MOITRA M., WOOLVERTON C.J., LEFF L.G. Effects of remediation on the bacterial community of an acid mine drainage impacted stream. Can. J. Microbiol. 58, 1316, 2012.
  • 9. GHOSH M., SINGH S.P. A review on phytoremediation of heavy metals and utilization of its byproducts. Appl. Ecol. Environ. Res. 3, 1, 2005.
  • 10. STOLTZ E., GREGER M. Influences of wetland plants on weathered acidic mine tailings. Environ. Pollut.144, 689, 2006.
  • 11. BATTY L.C., YOUNGER P.L. Growth of Phragmites australis (Cav.) Trin ex. Steudel in mine water treatment wetlands: effects of metal and nutrient uptake. Environ. Pollut. 132, 85, 2004.
  • 12. GUO L., CUTRIGHT T.J. Effect of citric acid and bacteria on metal uptake in reeds grown in a synthetic acid mine drainage solution. J. Environ. Manage. 150, 235, 2015.
  • 13. THEEGALA C.S., ROBERTSON C.E.C., SULEIMAN A.A. Phytoremdiation potential and toxicity of barium to three freshwater microalgae: Scenedesmus subspicatus, Selenastrum capricorntum, and Nannochloropsis sp. Pract. Period. Hazard. Toxic. Radioact. Waste Manag. 5, 194, 2001.
  • 14. SASMAZ A., SASMAZ M. The phytoremediation potential for strontium of indigenous plants growing in a mining area. Environmen. Exper. Bot. 67, 139, 2009.
  • 15. MARQUES A.P.G.C., OLIVEIRA R.S., SAMARDJIEVA K.A., PISSARRA J., RANGEL A.O.S.S., CASTRO P.M.L. EDDS and EDTA-enhanced zinc accumulation by Solanum nigrum inoculated with arbuscular mycorrhizal fungi grown in contaminated soil. Chemosphere, 70, 1002, 2007.
  • 16. ALI N.A., BERNAL M..P, ATER M. Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil 239, 103, 2002.
  • 17. BONANNO G., GIUDICE R. Lo. Heavy metal bioaccumulation by the organs of Pharamites australis (common reed) and their potential use as contamination indicators. Ecol. Indic. 10, 39, 2010.
  • 18. BALDANTONI D., LIGRONE R., ALFANI A. Macroand trace-element concentrations in leaves and roots of Phragmites australis in a volcanic lake in Southern Italy. J. Geochem. Explor. 101,166, 2009.
  • 19. CICERO-FERNÁNDEZ D., PEÑA-FERNÁNDEZ M., EXPÓSITO-CAMARGO J.A., ANTIZAR-LADISLAO B. Role of Phragmites australis (common reed) for heavy metals phytoremediation of estuarine sediments. Int J Phytorem. 18 (6), 575, 2016.
  • 20. FAWAZY M.A., BADR NE-S., ABO-El-KASSEM A. Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile. Environ. Monit. Assess. 184, 1753, 2012.
  • 21. RZYMSKI P, NIEDZIELSKI P, KLIMASZYK P, PONIEDZIALE B. Bioaccumulation of selected metals in bivalves (Vnionidae) and Phragmites australis inhabiting a municipal water reservoir. Environ. Monit. Assess. 186 (5), 3199, 2014.
  • 22. LI G., HU N., DINGD., ZHENG J., LIU Y., WANG Y., NIE X. Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in south China. Bull. Environ. Contam. Toxicol. 86, 646, 2011.
  • 23. BONANNO G. Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicol Environ Saf. 74 (4), 105764, 2011.
  • 24. HAMIDIAN A.H., ZAREH M., POORBAGHER, H., VAZIRI L., ASHRAFI S. Heavy metal bioaccumulation in sediment, common reed, algae, and blood worm from the Shoor river, Iran. Toxicol. Ind. Health 32, 398, 2016.
  • 25. ZHANG H.G., CUI B.S., ZHANG K.J. Heavy metals distribution of natural and reclaimed tidal riparian wetlands in south estuary, China. J. Environ. Sci. 23, 1937, 2011.
  • 26. GUO L., CUTRIGHT T. J. Metal storage in reeds from an acid mine drainage contaminated field. Int. J. Phytorem. 19, 254, 2017.
  • 27. GUILLAUME T., CHAWLA F., STEINMANN P., GOBAT J., FROIDEVAUX P. Disparity in 90 Sr and 137 Cs uptake in Alpine plants: phylogenetic effect and Ca and K availability. Plant Soil, 355, 29, 2012.
  • 28. YE Z.H., WONG M.H., BAKER A.J.M., WILLIS A.J. Comparison of biomass and metal uptake between two populations of Phragmites australis grown in flooded and dry conditions. Ann. Bot. 82, 83, 1998.
  • 29. STOLTZ E., GREGER M. Effects of different wetland plant species on fresh unweathered sulphidic mine tailings. Plant Soil 276, 251, 2005.
  • 30. YANG J., YE Z. Metal accumulation and tolerance in wetland plants. Front. Biol. China. 4, 282, 2009.
  • 31. TAYLOR G.J., CROWDER A.A., RODDEN R. Formation and Morphology of an Iron Plaque on the Roots of Typha latifolia L. Grown in Solution Culture. Amer. J. Bot .71, 666, 1984.
  • 32. DENG H., YE Z.H., WONG M.H. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ. Pollut. 132, 29, 2004.
  • 33. GHASSEMZADEH, F., YOUSEFZADEH, H., ARBABZAVAR, M.H. Arsenic phytoremediation by Phragmites australis: green technology. Int. J. Environ. Stud. 65, 587, 2008.
  • 34. COSCIONE A.R., BERTON R.S. Barium extraction potential by mustard, sunflower and castor bean. Scientia. Agricola. 66, 59, 2009.
  • 35. JUNIOR J.M., SOBRINHO N.M.D., BO A., ZONTA E., MAGALHÃES, M.O.L. Barium and sodium in sunflower plants cultivated in soil treated with wastes of drilling of oil well. Rev. Bras. Eng. Agríc. Ambient. 19, 1100, 2015.
  • 36. ERNST W.H.O. Evolution of metal tolerance in higher plants. For Snow Landsc. Res. 80, 251, 2006.
  • 37. SARAP, N., JANKOVIĆ, M., DOLIJANOVIĆ, Ž., KOVAČEVIĆ, D., RAJAČIĆ, M., NIKOLIĆ, J., TODOROVIĆ, D. Soil-to-plant transfer factor for Sr and Cs. J. Radioanal. Nucl. Chem. 303, 2523, 2015.
  • 38. SOUDEK P., VALENOVÁ Š., VAVŘÍKOVÁ Z., VANĚK T. ¹³⁷Cs and ⁹⁰Sr uptake by sunflower cultivated under hydroponic conditions. J. Environ. Radioactiv. 88, 236, 2006.
  • 39. TAYLOR, G.J., CROWDER A.A. Uptake and accumulation of heavy metals by Typha latifolia in wetlands of the Sudbury, Ontario region. Can. J. Bot. 61, 63, 1983.
  • 40. TSIALTAS, J. T., MATSI, T., BARBAYIANNIS, N., SDRAKAS, A., VERESOGLOU, D.S. Strontium absorption by two trifolium species as influenced by soil characteristics and liming. Water Air Soil Pollut. 144, 363, 2003.
  • 41. SANCHEZ A.L., SMOLDERS E., VAN DEN BRANDE K., MERCKX R., WRIGHT S.M., NAYLOR C. Predictions of in situ solid/liquid distribution of radiocaesium in soils. J. Environ. Radioact. 63, 35, 2002.
  • 42. KUMAR, J.I.N., SONI, H., KUMAR, R.N. Biomonitoring of selected freshwater macrophytes to assess lake trace element contamination: a case study of Nal Sarovar Bird Sanctuary, Gujarat. India. J. Limnol. 65, 9, 2006.
  • 43. REDISKE J.H., SELDERS A.A. The absorption and translocation of strontium by plants. Plant Physiol. 28, 594, 1953.
  • 44. KARTOSENTONO, S., ZAINI, N., I NDRYANTO, G., NURAIDA, A. Phytoremediation of Sr²⁺ and its influence on the growth, Ca²⁺ and solasodine content of shoot cultures of Solanum laciniatum. Biotechnol Lett, 23, 153, 2001.
  • 45. VANDECASTEELE, B., QUATAERT, P., TACK, F.M.G. The effect of hydrological regime on the metal availability for the wetland plant species Salix cinerea. Environ. Pollut. 135, 303, 2005.
  • 46. MOYEN C., ROBLIN, G. Uptake and translocation of strontium in hydroponically grown maize plants, and subsequent effects on tissue ion content, growth and chlorophyll a/b ratio: comparison with Ca effects. Environmen. Exper. Bot. 68, 247, 2010.
  • 47. HECHMIN N, BEN AISSA N., ABDENACEUR H., JEDIDI N. Uptake and bioaccumulation of pentachlorophenol by emergent wetland plant Phragmites australis (Common Reed) in Cadmium co-contaminated soil. Int. J. Phytorem. 17 (2), 109, 2015.
  • 48. PHILLIPS D.P., HUMAN L.R.D., ADAMS J.B. Wetland plants as indicators of heavy metal contamination. Mar. Pollut. Bull. 92, 227, 2015.
  • 49. KYOKO H., MASATAKE K., MASAHISA T., HARUKA I., NAOFUMI S., NAOKO F., YASUNORI N., NOBUO S., SHU F, EITARO M. Common reed accumulates starch in its stem by metabolic adaptation under Cd stress conditions. Front. Plant. Sci. 6, 138, 2015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-67dadb7e-cf7d-4167-bd0b-c5981dfe0192
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.