PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 63 | 4 |

Tytuł artykułu

Occurrence of pathogenic and endophytic fungi and their influence on quality of medicinal plants applied in management of neurological diseases and mental disorders

Treść / Zawartość

Warianty tytułu

PL
Występowanie patogenicznych i endofitycznych grzybów i ich wpływ na jakość roślin zielarskich stosowanych w leczeniu chorób neurologicznych i psychicznych

Języki publikacji

EN

Abstrakty

EN
Due to increasing demand of medicinal plants (MPs), quality and safety more attention to the plant health should be paid. Among herb pathogens, especially fungi cause serious diseases in these plants decreasing yield and quality of herbal raw material. Some species, i.e. Fusarium sp., Alternaria sp., Penicillium sp. are known as mycotoxin producers. Paradoxically, self-treatment with herbal raw material can expose the patient to mycotoxin activity. In tissues of some MPs species, asymptomatically endophytic fungi residue. It is known that they are able to influence a biosynthesis of secondary metabolites in their host plant or produce biologically active compounds. Until recently these microorganisms have been neglected as a component of MPs, the reason why there have unexplored bioactivity and biodiversity. The paper presents an overview of herbal plants that are used in the treatment of nervous system diseases. Pathogenic fungi that infect these plants are described. It focused mainly on species producing harmful mycotoxins. The publication presents a list of these mycotoxins and a brief description of their effects on human health. The second part of this article provides information on the occurrence of endophytic fungi in herbal plants and their effects on human health. Coexistence of fungi and medicinal plants is not fully understood but can be crucial to ensure health and safety of patients with neurological diseases and mental disorders.
PL
Ze względu na stały wzrost zapotrzebowania na jakość i bezpieczeństwo roślin zielarskich, należałoby zwrócić większą uwagę na ich zdrowotność. Wśród patogenów roślin zielarskich, szczególnie grzyby powodują poważne choroby, zmniejszając plon i jakość surowców roślinnych. Niektóre gatunki m.in. Fusarium sp., Alternaria sp., Penicillium sp. znane są jako producenci toksycznych metabolitów. Paradoksalnie ludzie próbujący leczyć się samodzielnie (używając surowców zielarskich), mogą być narażeni na działanie tych mykotoksyn. W tkankach niektórych roślin zielarskich występują (bezobjawowo) pozostałości grzybów endofitycznych. Wiadomo, że mają one zdolność wywierania wpływu na biosyntezę wtórnych metabolitów rośliny żywicielskiej lub wytwarzają związki biologicznie czynne. Do niedawna te mikroorganizmy były przeoczane jako „składnik” roślin zielarskich, co spowodowało, że nadal są polem niezbadanej bioaktywności i bioróżnorodności. W artykule przedstawiono przegląd roślin zielarskich stosowanych w leczeniu chorób układu nerwowego. Opisano grzyby patogeniczne dla tych roślin. Skupiono się głównie na gatunkach biosyntetyzujących szkodliwe mykotoksyny. Publikacja obejmuje listę tych mykotoksyn oraz krótki opis ich wpływu na zdrowie człowieka. Druga część artykułu dostarcza informacji o występowaniu grzybów endofitycznych w roślinach zielarskich i wpływie endofitów na zdrowie człowieka. Współistnienie grzybów i roślin leczniczych nie jest w pełni zrozumiane, a może być bardzo istotne dla zapewnienia zdrowia i bezpieczeństwa pacjentów z zaburzeniami neurologicznymi i psychicznymi.

Wydawca

-

Czasopismo

Rocznik

Tom

63

Numer

4

Opis fizyczny

p.57-69,ref.

Twórcy

autor
  • Department of Breeding and Agriculture of Fibrous and Energetic Plants, Institute of Natural Fibers and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
  • Department of Phytopathology, Seed Science and Technology, Poznan University of Life Sciences, Dabrowskiego 159, 60-594 Poznan, Poland

Bibliografia

  • 1. Blumenthal M, Goldberg A, Brinckmann J. Herbal Medicine: Expanded Commission E Monographs. Newton, MA: Integrative Medicine Communications, eds. 2002; 123-129.
  • 2. Calvo MI, Cavero RY. Medicinal plants used for neurological and mental disorders in Navarra and their validation from official sources. J Ethnopharm 2015; 169:263-268. doi: http://dx.doi.org/10.1016/j.jep.2015.04.035
  • 3. Romeiras MM, Duarte MC, Indjai B, Catarino L. Medicinal plants use to treat neurological disorders in West Africa: a case study with Guinea-Bissau flora. Am J Plant Sci 2012; 3:1028-1036. doi: http://dx.doi.org/10.4236/ajps.2012.327122
  • 4. Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 2003; 66:1022–1037. doi: http://dx.doi.org/10.1021/np030096l
  • 5. Jones WP, Chin YW, Kinghorn AD. The role of pharmacognosy in modern medicine and pharmacy. Curr Drug Targets 2006; 7:247-264.
  • 6. Máthé A. Medicinal and aromatic plants of the world: scientific, production, commercial and utilization aspects. 1st ed. Springer 2015; pp. 448.
  • 7. Srivastava JK, Shankar E, Gupta S. Chamomile: A herbal medicine of the past with bright future. Mol Med Rep 2010; 3(6):895-901. doi: http://dx.doi.org/10.3892/mmr.2010.377
  • 8. Verkhratsky A, Parpura V. Neurological and psychiatric disorders as a neurological failure. Period Biol 2014; 116(2):115-124.
  • 9. WHO 2001; www.who.int.whr/2001/media-center/en/whr01_fact_sheet1_enpdf
  • 10. WHO 2017; http://www.who.int/mental_health/mhgap/en/
  • 11. Bussmann RW. The globalization of traditional medicine in Northern Peru: from shamanism to molecules. Evid-Based Complement Alter Med 2013; 2013:1-46. doi: http://dx.doi.org/10.1155/2013/291903
  • 12. Bögels S, Knappe S, Clark LA. Adult separation anxiety disorder in DSM-5. Clin Psychol Rev 2013; 33:663-674. doi: http://dx.doi.org/10.1016/j.cpr.2013.03.006
  • 13. Thorp SR, Ayers CR, Nuevo R. Meta-analysis comparing different behavioral treatments for late-life anxiety. Am J Geriatr Psychiatry 2009; 17:105-115. doi: http://dx.doi.org/10.1097/JGP.0b013e31818b3f7e
  • 14. Irzykowska L, Bocianowski J, Waśkiewicz A, Weber Z, Golinski P, Karolewski Z et al. Genetic variation of Fusarium oxysporum isolates forming fumonisin B1 and moniliformin. J Appl Genet 2012; 53:237-247. doi: http://dx.doi.org/10.1007/s13353-012-0087-z
  • 15. Machowicz-Stefaniak Z, Gabler J, Zalewska E. Patogeny zagrażające uprawie roślin zielarskich/ Pathogens threaten the cultivation of herb plants. Folia Hortic Supl 2003; 1:565-567.
  • 16. Li XY, Qing C, Zhang YL, Zhao ZW. Screening for endophytic fungi with anti-tumor and antifungal activities from Chinese medicinal plants. World J Biotechnol 2005; 21:1515-1519. doi: http://dx.doi.org/10.1007/s11274-005-7381-4
  • 17. Michalczyk A, Cieniecka-Rosłonkiewicz A, Cholewińska M. Plant endophytic fungi as a source of paclitaxel, Herba Pol 2014; 60(4):22-33. doi: http://dx.doi.org/10.1515/hepo-2015-0002
  • 18. Szczeponek A, Mazur S. Occurence of fungal diseases on lemon balm (Melissa officinalis L.) and peppermint (Mentha piperita L.) in the region of Malopolska. Commun Agric Appl Biol Sci 2006; 71(3B):1109-1118.
  • 19. Greeson JM, Stanford B, Monti DA. St. John’s wort (Hypericum perforatum): a review of the current pharmacological, toxicological, and clinical literature. Psychopharmacology 2001; 153:402-414. doi: http://dx.doi.org/10.1007/s002130000625
  • 20. Dwyer AV, Whitten DL, Hawrelak JA. Herbal medicines, other than St. John’s wort, in the treatment of depression: a systematic review. Alternat Med Rev 2011; 16(1):40-49.
  • 21. Boullata A, Joseph I, Nace S, Angela M. Safety issues with herbal medicine: common herbal medicines. Pharmacotherapy 2000; 20(3):257-269. doi: http://dx.doi.org/10.1592/phco.20.4.257.34886
  • 22. Vigano D, Rubino T, Parolaro D. Molecular and cellularbasis of cannabinoid and opioid interactions. Pharmacol Biochem Behav 2005; 81:360-368. doi: http://dx.doi.org/10.1016/j.pbb.2005.01.021
  • 23. Mechoulam R, Hanus L. Cannabidiol: an overview of some chemical and pharmacological aspects. Part I: chemical aspects. Chem Phys Lipids 2002; 121:35-43. doi: http://dx.doi.org/10.1016/S0009-3084(02)00144-5
  • 24. Marcello I, Sara V, Gelsomina F, Franco F. Neuroprotective, herbs and foods from different traditional medicines and diets. Molecules 2010; 15:3517-3555.
  • 25. Loy C, Schneider L. Galantamine for Alzheimer’s disease and mild cognitive impairment. Cochrane Database Syst Rev 2006; 25(1):CD001747. doi: http://dx.doi.org/10.1002/14651858.CD001747.pub3
  • 26. Henley DV, Lipson N, Korach KS. Prepubertal gynecomastia linked to lavender and tea tree oils. New Eng J Med 2007; 356(5):479-485.
  • 27. Perry R, Terry R, Watson LK, Ernst E. Is lavender an anxiolytic drug? A systematic review of randomised clinical trials. Phytomedicine 2012; 19(8-9):825-835. doi: http://dx.doi.org/10.1016/j.phymed.2012.02.013
  • 28. Gardiner P. Complementary, holistic, and integrative medicine: chamomile. Pediatr Rev 2007; 28(4):e16-e18.
  • 29. Amsterdam JD, Li Y, Soeller I. A randomized, double-blind, placebo-controlled trial of oral Marticaria recutita (chamomile) extract therapy of generalized anxiety disorder. J Clinic Psychopharmacol 2009; 29(4):378-382.
  • 30. Ford AC, Talley NJ, Spiegel BM, Effect of fibre, antispasmodics, and peppermint oil in the treatment of irritable bowel syndrome: systematic review and meta-analysis. BMJ 2008; 337:a2313. doi: http://dx.doi.org/10.1136/bmj.a2313
  • 31. Kligler B, Chaudhary S. Peppermint oil. Am Family Physic 2007; 75(7):1027-1030.
  • 32. McKay DL, Blumberg JB. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother Res 2006; 20(8):619-633. doi: http://dx.doi.org/10.1002/ptr.1936
  • 33. Ravid U, Putievsky EI. Enantiomeric distribution of piperitone in essential oils of some mentha spp., Calamintha incana (sm.) heldr. and Artemisia indaica. Flavour Fragrance J 1994; 9:85-87.
  • 34. Tassou CC, Drosinos EH, Nychas GJ. Effects of essential oil from mint (Mentha piperita) on Salmonella enteritidis and Listeria monocytogenes in model food system at 4 degrees and 10 degrees C. J Appl Bacteriol 1995; 78(6):593-600.
  • 35. Lee JY, Hwang WI, Lim ST. Antioxidant and anticancer activities of organic extracts from Platycodon grandiflorum A. De Candolle roots. J Ethnopharmacol 2004; 93:409-415. doi: http://dx.doi.org/10.1016/j.jep.2004.04.017
  • 36. Cacabelos R. Alzheimer disease. Rev Med Pract Clin 1997; 2:124-142.
  • 37. Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: A double blind, randomized and placebo-controlled trial. J Clin Pharm Therap 2003; 28(1):53-9. doi: http://dx.doi.org/10.1046/j.1365-2710.2003.00463.x
  • 38. Tomassini LM, Cometa F, Foddai S, Nicoletti M. Iridoid glucosides from Viburnum tinus. Phytochemistry 1995; 38(2):423-425. doi: http://dx.doi.org/10.1016/0031-9422(94)00618-4
  • 39. Vasanthi H, Parameswari RP. Indian spices for healthy heart. Curr Cardiol Rev 2010; 6(4):274-279. doi: http://dx.doi.org/10.2174/157340310793566172
  • 40. Ashton AK, Ahrens K, Gupta S, Masand PS. Antidepressant-induced sexual dysfunction and Ginkgo biloba. Am J Psychiatry 2000; 157(5):836-837. doi: http://dx.doi.org/10.1176/appi.ajp.157.5.836
  • 41. Van Dongen M, van Rossum E, Kessels A, Sielhorst H, Knipschild P. Ginkgo for elderly people with dementia and age-associated memory impairment: a randomized clinical trial. J Clin Epidemiol 2003; 56(4):367-376. doi: http://dx.doi.org/10.1016/S0895-4356(03)00003-9
  • 42. Pinto SA, Bohland E, Coelho Cde P, Morghulis MS, Bonamin LV. An animal model for the study of Chamomilla in stress and depression: pilot study. Homeopathy 2008; 97:141-4. doi: http://dx.doi.org/10.1016/j.homp.2008.04.001
  • 43. Telci I, Bayram E, Yilmaz G, Avci B. Variability in essential oil composition of Turkish basils (Ocimum basilicum L.). Biochem Syst Ecol 2006; 34:489-497. doi: http://dx.doi.org/10.1016/j.bse.2006.01.009
  • 44. Hobbs C. Valerian and other anti-hysterics in European and American medicine. 1996. Herbal Medicine. Health World Online. http://www.healthy.net/hwlibraryarticles/hobbs/valer4.htm
  • 45. Hendriks H, Bos R, Allersma DP, Malingré ThM, Koster ASj. Pharmacological screening of valerenal and some other components of essential oil of Valeriana officinalis. Planta Med 1981; 42:62-68.
  • 46. Heidler D, Schatzmayr GA. New approach to managing mycotoxins. World Poult Reed 2003; 19(2):12-15.
  • 47. Datta R, Deepak K, Chattopadhyay S. Membrane proteome profiling of Mentha arvensis leaves in response to Alternaria alternata infection identifies crucial candidates for defense response. Plant Sign Behav 2016; doi: http://dx.doi.org/10.1080/15592324.2016.1178423
  • 48. James RC. General principles of toxicology, p.7-26. (In:) PL. Williams and JL. Burson (eds.), Industrial toxicology. New York 1985.
  • 49. Meronuck RA, Steele J, Mirocha CJ. Tenuazonic acid, a toxin produced by Alternaria alternata. Appl Microbiol 1972; 23(3):613-617.
  • 50. Minuto A, Minuto G, Migheli Q, Mocioni M, Gullino ML. Effect of antagonistic Fusarium spp. and different commercial biofungicide formulations on Fusarium wilt of basil (Ocimum basilicum L.). Crop Protect 1997; 16:765-9.
  • 51. Trueman SL, Wick RL, Fusarium wilt of herbs. Acta Hortic 1996; 426:41-56. doi: http://dx.doi.org/10.17660/ActaHortic.1996.426.41.
  • 52. Machowicz-Stefaniak Z, Zalewska E, Zimowska B. Grzyby zasiedlające nadziemne organy melisy lekarskiej Melissa officinalis L. i tymianku właściwego Thymus vulgaris L. uprawianych na Lubelszczyźnie [Fungi colonizing above-ground parts of lemon balm Melissa officinalis L. and thyme Thymus vulgaris L. cultivated in the Lublin region]. Folia Univ Agric Stetin Agricultura 2004; 239(95):229-232.
  • 53. Zimowska B, Machowicz-Stefaniak Z. Fungi threatening with cultivation of St. John’s Wort (Hypericum perforatum L.) in the Lublin province. Acta Sci Pol Hort Cultus 2004; 3(1):61-74.
  • 54. Lewis L, Onsongo M, Njapau H, Schurz-Rogers H, Luber G, Kieszak S, et al. Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and central Kenya. Environ Health Perspect 2005; 113(12):1763-7. doi: http://dx.doi.org/10.1289/ehp.7998
  • 55. Rekosz-Burlaga H, Borys M, Goryluk-Salmonowicz A. Cultivable microorganisms inhabiting the aerial parts of Hypericum perforatum. Acta Sci Pol Hort Cultus 2014; 13(5):117-129.
  • 56. Zalewska E, Machowicz-Stefaniak Z. Patogeniczność grzybów z rodzaju Fusarium dla melisy le karskiej (Melissa officinalis L.). Acta Sci Pol Hort Cultus 2004; 3:33-9.
  • 57. Wielgusz K, Seidler-Łożykowska K. Fungi colonizing and damaging different parts of some medicinal plants. Herba Pol 2017; 63(2):18-26. doi: http://dx.doi.org/10.1515/hepo-2017-0009
  • 58. D’Mello J, Placinta C, Macdonald A. Fusarium mycotoxins: A review of global implications for animal health, welfare and productivity. Anim Feed Sci Tech 1999; 80:183-205. doi: http://dx.doi.org/10.1016/S0377-8401(99)00059-0
  • 59. Maresca M, Fantini J. Some food-associated mycotoxins as potential risk factors in humans predisposed to chronic intestinal inflammatory diseases. Toxicon 2010; 56:282-294. doi: http://dx.doi.org/10.1016/j.toxicon.2010.04.016
  • 60. Maresca M. From the gut to the brain: Journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. Toxins 2013; 5:784-820. doi: http://dx.doi.org/10.3390/toxins5040784
  • 61. Devriendt B, Verdonck F, Wache Y, Bimczok D, Oswald IP, Goddeeris BM, et al. The food contaminant fumonisin B1 reduces the maturation of porcine CD11r1+ intestinal antigen presenting cells and antigen-specific immune responses, leading to a prolonged intestinal ETEC infection. Vet Res 2009; 40:1-14. doi: http://dx.doi.org/10.1051/vetres/2009023
  • 62. Zain ME. Impact of mycotoxins on humans and animals. J Saudi Chem Soc 2011; 15:129-144. doi: http://dx.doi.org/10.1016/j.jscs.2010.06.006
  • 63. Smith TK, Diaz G, Swamy H. Current Concepts in Mycotoxicoses in Swine. In: Diaz DE (ed.) The Mycotoxin Blue Book. Nottingham University Press; Nottingham, UK: 2005:235-248.
  • 64. Devegowda G, Murthy T. Mycotoxins: Their Effects in Poultry and Some Practical Solutions. In: Diaz D.E. ed. The Mycotoxin Blue Book. Nottingham University Press; Nottingham 2005; 25-56.
  • 65. Andrews-Polymenis HL, Bäumler AJ, McCormick BA, Fang FC. Taming the elephant: Salmonella biology, pathogenesis, and prevention. Infect Immun 2010; 78:2356-2369. doi: http://dx.doi.org/10.1128/IAI.00096-10
  • 66. Martel GA, Pasmans F, Ducatelle R, Verbrugghe E, Vandenbroucke V, Li S et al. The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxina (Basel) 2014; 6(2):430-452. doi: http://dx.doi.org/10.3390/toxins6020430
  • 67. Bottcher H, Gunther I. Storage of dry drug. In: Franke R, Schilcher H. Chamomile: industrial profiles. 1st ed. Boca Raton: CRC Press; 2005:211-230.
  • 68. Lioi M, Santoro A, Barbieri R, Salzano S, Ursini M. Ochratoxin A and zearalenone: a comparative study on genotoxic effects and cell death induced in bovine lymphocytes. Mutat Res 2004; 557:19-27.
  • 69. Muller G, Burkert B, Moller U, Diller R, Rohrmann B, Rosner H, et al. Ochratoxin A and some of its derivatives modulate radical formation of porcine blood monocytes and granulocytes. Toxicology 2004; 199:251-259.
  • 70. Muller G, Rosner H, Rohrmann B, Diller R, Rosner H, Kohler K. Effects of the mycotoxin ochratoxin A and some of its metabolites on the human cell line THP-1. Toxicology 2003; 184:69-82.
  • 71. Kumagai T, Nagata T, Kudo Y, Fukuchi Y, Ebina K, Yokata K. Cytotoxic activity and cytokine gene induction of Asp-hemolysin to murine macrophages. Nippon Ishinkin Gakkai Zasshi 1999; 40:217-222.
  • 72. Kumagai T, Nagata T, Kudo Y, Fukuchi Y, Ebina K, Yokata K. Cytotoxic activity and cytokine gene induction of Asp-hemolysin to vascular endothelial cell. Yakugaku Zasshi 2001; 121:271-275.
  • 73. Müllbacher A, Waring P, Eichner R. Identification of an agent in cultures of Aspergillus fumigatus displaying anti-phagocytic and immunomodulating activity in vitro. J Gen Microbiol 1985; 131:1251-1258.
  • 74. Klich MA, Mullaney EJ, Daly CB, Cary JW. Molecular and physiological aspects of aflatoxin and sterigmatocystin biosynthesis by A. tamarii and A. ochraceoroseus. Appl Microbiol Biotechnol 2000; 53:605-622.
  • 75. Goto T, Wicklow DT, Ito Y. Aflatoxin and cyclopiazonic acid production by a sclerotium-producing Aspergillus tamarii strain. Appl Environ Microbiol 1996; 62:4036-4038.
  • 76. Bentley R, Bennett JW. Constructing polyketides: from Collie to combinatorial biosynthesis. Annu Rev Microbiol 1999; 53:411-446. doi: http://dx.doi.org/10.1146/annurev.micro.53.1.411
  • 77. Hetherington AC, Raistrick H. Studies in the biochemistry of microorganisms. Part XIV. On the production and chemical constitution of a new yellow colouring matter, citrinin, produced from glucose by Penicillium citrinum. Thom Phil Trans R Soc London 1931. Ser. B 220B:269-295.
  • 78. Wilson BJ, Harris TM, Hayes AW. Mycotoxin from Penicillium puberulum. J Bacteriol 1967; 93(5):1737-1738.
  • 79. Zimowska B. Fungi threatening the cultivation of sage (Salvia officinalis L.) in south-eastern Poland. Herba Pol 2008; 54(1):14-21.
  • 80. Logrieco A, Moretti A, Solfrizzo M. Alternaria toxins and plant diseases: an overview of origin, occurrence and risks. World Mycotoxin J 2009; 2(2):129-140. doi: http://dx.doi.org/10.3920/WMJ2009.1145
  • 81. Radaitiene D, Kacergius A, Radusiene J. Fungal diseases in Hypericum perforatum L. and H. maculatum Crantz in Lithuania. Biologija 2002; 2:35-37.
  • 82. Balz JP, Courtois D, Drieu J, Reynoird JP, Sohier C, Teng BP et al. Valeriana officinalis, nuovo ospite del virus dell’avvizzimento della fava (BBWV). ATTI Giornate Fitopatol 1998; 789-794.
  • 83. Qin JC, Zhang YM, Gao JM, Bai MS, Yang SX, Laatsch H et al. Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Boorgan Med Chem 2009; 19:1572-1574.
  • 84. Sultan SA, Sehgal M, Arora S, Singh A, Srivastava K, Yadav AS et al. Community analysis of key pests associated with mentha crop at sitapur, U.P. India. Inter J Res Engin Innov 2016; 1(2):1-6.
  • 85. Rheeder JP, Marasas WFO, Wismer HF. Production of fumonisin analogs by Fusarium species. Appl Environ Microbiol 2002; 68:2102-2105.
  • 86. Harmala P, Kaltia S, Vuorela H, Hiltunen R. Dihydrofuranocoumarin from Angelica archangelica . Planta Med 1992; 58:287-289.
  • 87. Zalewska E, Machowicz-Stefaniak Z, Król E. Occurrence of fungi on angelica plants Archangelica officinalis Hoffm. Acta Sci Pol Hort Cultus 2013; 12(2):107-121.
  • 88. Pappas AC, Elena K. Occurrence of Fusarium oxysporum f. sp. cumini in the Island of Chios, Greece. J Phytopathol 1997; 145:271-272.
  • 89. McCain AH, Noviello C. Biological control of Cannabis sativa. Proc. VI Int. Symp Biol Contr Weeds, Vancouver 19-25 August 1985; 635-64.
  • 90. Machowicz-Stefaniak Z, Zalewska E. Grzyby zagrażające uprawie wybranych gatunków ziół z rodziny Apiaceae w południowo-wschodniej Polsce [The fungi threaten to some species of herbs from Apiaceae family cultivated in South-East Poland]. Folia Univ Agric Stetin Agricultura 2004; 239(95):223-228.
  • 91. Singht O, Khanam Z, Misra N, Kumar M, Srivastava K. Chamomile (Matricaria chamomilla L.): An overview. Pharmacogn Rev 2011; 5(9):82-95. doi: http://dx.doi.org/10.4103/0973-7847.79103
  • 92. Bacon CW, White J. Microbial Endophytes, New York 2000.
  • 93. Kusari S, Spiteller M. Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, chellenges and opportunities. In: Metabolomics. Roessner U. (ed.) InTech 2012. doi: http://dx.doi.org/10.5772/31596
  • 94. Kaul S, Gupta S, Ahmed M, Dhar MK. Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev 2012; 11:487-505. doi: http://dx.doi.org/10.1007/s11101-012-9260-6
  • 95. Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T. A friendly relationship between endophytic fungi and medicinal plants: A systematic review. Front Microbiol 2016; 7:906. doi: http://dx.doi.org/10.3389/fmicb.2016.00906
  • 96. Zhang HW, Song YC, Tan RX. Biology and chemistry of endophytes. Nat Prot Rep 2006; 23(5):753-771. doi: http://dx.doi.org/10.1039/b609472b
  • 97. Faeth SH, Fagan WF. Fungal endophytes: common host plant symbionts but uncommon mu tualists. Integr Comp Biol 2002; 4:360-368. doi: http://dx.doi.org/10.1093/icb/42.2.360
  • 98. Ahmad N, Hamayun M, Khan SA, Khan AL, Lee IJ, Shin DH. Gibberellin-producing endophytic fungi isolated from Monochoria vaginalis. J Microbiol Biotechnol 2010; 20:1744-1749. doi: http://dx.doi.org/10.4014/jmb.1005.05018
  • 99. Abd-Allah EF, Hashem A, Alqarawi A, Bahkali AH, Alwhibi MS. Enhancing growth performance and systemic aquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress. Saudi J Biol Sci 2015; 22:274-283. doi: http://dx.doi.org/10.1016/j.sjbs.2015.03.004
  • 100. Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K. Endophytic fungi: A source of novel biologically active secondary metabolites. Mycol Res 2002; 106:996-1004. doi: http://dx.doi.org/10.1017/S0953756202006342
  • 101. Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D. Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 2011; 28:1208-1228. doi: http://dx.doi.org/10.1039/c1np00008j
  • 102. Bais HP, Vepachedu R, Lawrence CB, Stermitz FR, Vivanco JM. Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s wort (Hypericum perforatum L.). J Biol Chem 2003; 278(34):32413-32422. doi: http://dx.doi.org/10.1074/jbc.M301681200
  • 103. Waśkiewicz A, Goliński P, Karolewski Z, Irzykowska L, Bocianowski J, Kostecki M et al. Formation of fumonisins and other secondary metabolites by Fusarium oxysporum and F. proliferatum – a comparative study. Food Add Cont 2010; 27(5):608-615. doi: http://dx.doi.org/10.1080/19440040903551947
  • 104. Kusari S, Lamshöft M, Zühlke S, Spiteller M. An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 2008; 71:159-162. doi: http://dx.doi.org/10.1021/np070669k
  • 105. Kusari S, Lamshöft M, Zühlke S, Spiteller M. Light independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J Nat Prod 2009; 72:1825-1835. doi: http://dx.doi.org/10.1021/np9002977
  • 106. Chithra S, Jasima B, Sachidanandan P, Radhakrishnana M, Jyothis EK. Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine 2014; 21(4):534-540. doi: http://dx.doi.org/10.1016/j.phymed.2013.10.020
  • 107. Qiu M, Xie RS, Shui Y, Zhang HH, Chen HM. Isolation and identification of two producing endophytic fungi from Ginkgo biloba L. Ann Microbiol 2010; 60:143-150.
  • 108. Cui Y, Yi D, Bai X, Sun B, Zhao Y, Zhang Y. Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 2012; 83 (5):913-20. doi: http://dx.doi.org/10.1016/j.fitote.2012.04.009

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-67d484be-4415-4f28-94fc-744775b7ff78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.