PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 78 | 3 |

Tytuł artykułu

Afferent projections of the subthalamic nucleus in the rat: emphasis on bilateral and interhemispheric connections

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The subthalamic nucleus (STN) is important for normal movement as well as in movement disorders. The STN is a target nuclei in patients with advanced Parkinson’s disease (PD). Deep brain stimulation (DBS) is a standard surgical treatment for PD. Although DBS results in a significant reduction in motor disability, several negative side effects have been reported. Thus, to understand the side effects of DBS the connection of the STN should be well known. Therefore, the present study aims to re‑examine the STN with an emphasis on poorly‑ or un‑documented connections. Furthermore, the bilateral and interhemispheric connections of the STN are evaluated. Fifteen male albino rats received injections of Fluoro‑Gold retrograde and biotinylated dextran amine anterograde tracers into the STN. Following a 7–10 day survival period, the animals were processed according to the relevant protocol for each tracer. The present study demonstrates ipsilateral connections of the STN with cortical regions (i.e., infralimbic, cingulate, frontal, piriform, primary motor, primary sensory, insular and retrosplenial cortices), the endopiriform nucleus, basal ganglia related structures (i.e., caudate putamen, globus pallidus, ventral pallidum, nucleus accumbens, claustrum and substantia innominata) and the deep cerebellar nuclei (i.e., lateral, anterior interposed). Bilateral connections of the STN were observed with limbic (amygdala, bed nucleus of stria terminalis), hypothalamic (ventromedial, posterior, anterior, lateral and mammillary) thalamic (thalamic reticular nucleus), epithalamic (habenular nucleus), and brainstem structures (superior colliculus, substantia nigra, spinal nucleus of the trigeminal nerve, red nucleus, dorsal raphe nucleus, pedunculopontine tegmental nuclei). Interhemispheric connections between left and right STN were also observed. The present study fills important gaps in connectivity of the STN. In particular, we report STN connectivity with cortical areas (i.e., piriform, endopiriform and insular), claustrum, hypothalamic, thalamic reticular, cerebellar, habenular, trigeminal, red, cuneate and gracile nuclei and substantia innominate. These connections, which have not been previously described or poorly described, provide new routes that can alter the conceptual architecture of the basal ganglia circuitry and may modify our view of the functional identity of the STN.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

78

Numer

3

Opis fizyczny

p.251-263,fig.,ref.

Twórcy

autor
  • Department of Anatomy, School of Medicine, Koc University, Sarıyer, Istanbul, Turkey
autor
  • Department of Anatomy, School of Medicine, Koc University, Sarıyer, Istanbul, Turkey
autor
  • Department of Anatomy and Structural Biology, School of Medical Science, University of Otago, Dunedin, New Zealand
autor
  • Department of Anatomy, School of Medicine, Koc University, Sarıyer, Istanbul, Turkey
autor
  • Department of Anatomy, School of Medicine, Koc University, Sarıyer, Istanbul, Turkey
autor
  • Department of Anatomy, School of Medicine, Koc University, Sarıyer, Istanbul, Turkey

Bibliografia

  • Accolla EA, Herrojo RM, Horn A, Schneider GH, Schmitz‑Hübsch T, Draganski B, Kühn AA (2016) Brain networks modulated by subthalamic nucleusdeep brain stimulation. Brain 139: 2503–2515.
  • Aravamuthan BR, Muthusamy KA, Stein JF, Aziz TZ, Johansen‑Berg H (2007) Topography of cortical and subcortical connections of the human pe‑ dunculopontine and subthalamic nuclei. Neuroimage 37: 694–705.
  • Asanuma H (1981) Functional role of sensory inputs to the motor cortex. Prog Neurobiol 16: 241–262.
  • Bálint E,  Mezey S,  Csillag A (2011) Efferent  connections  of  nucleus  ac‑ cumbens subdivisions of the domestic chicken (Gallus domesticus): an anterograde pathway tracing study. J Comp Neurol 519: 2922–2953.
  • Benabid AL (2003) Deep brain stimulation for Parkinson’s disease. Curr Opin Neurobiol 13: 696–706.
  • Benarroch EE (2008) Subthalamic nucleus and its connections: Anatomic substrate for the network effects of deep brain stimulation. Neurology 70: 1991–1995.
  • Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249: 1436–1438.
  • Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate sub‑ thalamic nucleus. II. Neuronal activity in the MPTP model of Parkinson‑ ism. J Neurophysiol 72: 507–520.
  • Boivie J (1971) The termination in the thalamus and the zona incerta of fibres from the dorsal column nuclei (DCN) in the cat an experimental study with silver impregnation methods. Brain Res 28: 459–490.
  • Bostan AC, Dum RP, Strick PL (2010) The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci 107: 8452–8456.
  • Canteras NS, Shammah‑Lagnado SJ, Silva BA,  Ricardo JA (1988) So‑ matosensory  inputs  to the  subthalamic  nucleus: a  combined  retro‑ grade and anterogradehorseradish peroxidase study in the rat. Brain Res 458: 53–64.
  • Canteras NS, Shammah‑Lagnado SJ, Silva BA, Ricardo JA (1990) Afferent connections of the subthalamic nucleus: a  combined retrograde and anterograde horseradish peroxidase study in the rat. Brain Res 513: 43–59.
  • Carpenter MB, Carleton SC, Keller JT, Conte P (1981) Connections of the subthalamic nucleus in the monkey. Brain Res 224: 1–29.
  • Carpenter MB, Baton RR 3rd, Carleton SC, Keller JT (1981) Interconnections and organization of pallidal and subthalamic nucleus neurons in the monkey. J Comp Neurol 197: 579–603.
  • Castrioto A, Meaney C, Hamani C, Mazzella F, Poon YY, Lozano AM, Hodaie M, Moro E (2011) The dominant‑STN phenomenon in bilateral STN DBS for Parkinson’s disease. Neurobiol Dis 41: 131–137.
  • Chang HT, Kita H, Kitai ST (1983) The fine structure of the rat subthalamic nucleus: an electron microscopic study. J Comp Neurol 221: 113–123.
  • Chometton  S, Cvetkovic‑Lopes  V, Houdayer C, Franchi G, Mariot  A, Poncet F, Fellmann D, Risold PY (2014) Anatomical organization of MCH connections with the pallidum and dorsal striatum in the rat. Front Syst Neurosci 8: 185.
  • Coizet V, Graham JH, Moss J, Bolam JP, Savasta M, McHaffie JG, Redgrave P, Overton PG (2009) Short‑latency visual input to the subthalamic nu‑ cleus is provided by the midbrain superior colliculus. J  Neurosci 29: 5701–5709.
  • Crick FC, Koch C (2005) What is the function of the claustrum? Philos. Trans R Soc Lond B Biol Sci 360: 271–279.
  • Darvas F, Hebb AO (2014) Task specific inter‑hemispheric coupling in hu‑ man subthalamic nuclei. Front Hum Neurosci 8: 701.
  • DeLong MR, Crutcher MD, Georgopoulos AP (1985) Primate globus palli‑ dus and subthalamic nucleus: functional organization. J  Neurophysiol 53: 530–543.
  • Dias Abdo Agamme AL, Aguilar Calegare BF, Fernandes L, Costa A, Lagos P, Torterolo P, D’Almeida V (2015) MCH levels in the CSF, brain preproMCH and MCHR1 gene expression during paradoxical sleep deprivation, sleep rebound and chronic sleep restriction. Peptides 74: 9–15.
  • Dong H,  Petrovich GD,  Swanson LW (2000) Organization  of  projec‑ tions from the juxtacapsular nucleus of the BST: a PHAL study in the rat. Brain Res 859: 1–14.
  • Drapier D, Drapier S, Sauleau P, Haegelen C, Raoul S, Biseul I, Peron J, Lallement F, Rivier I, Reymann JM, Edan G, Verin M, Millet B (2006) Does subthalamic nucleus stimulation induce apathy in Parkinson’s disease? J Neurol 253: 1083–1091.
  • Dujardin K, Blairy S, Defebvre L, Krystkowiak P, Hess U, Blond S, Destee A (2004) Subthalamic nucleus stimulation induces deficits in decoding emotional facial expressions in Parkinson’s disease. J Neurol Neurosurg Psychiatry 75: 202–208.
  • Feger J, Robledo P (1991) The effects of activation or inhibition of the sub‑ thalamic nucleus on the metabolic and electrophysiological activities within the pallidal complex and substantia nigra in the rat. Eur J Neu‑ rosci 3: 947–952.
  • Feger J, Robeldo P, Renwart N (1991) The subthalamic nucleus: new data, new questions. The Basal Ganglia III, Plenum Press, New York, pp. 99–108.
  • Florio T, Scarnati E, Confalone G, Minchella D, Galati S, Stanzione P, Stefani  A, Mazzone P (2007) High‑frequency  stimulation  of the sub‑ thalamic nucleus modulates the activity of pedunculopontine neurons through direct activation of excitatory fibres as well as through indi‑ rect activation of inhibitory pallidal fibres in the rat. Eur J Neurosci 25: 1174–1186.
  • Fraigne JJ, Peever JH (2013) Melanin‑concentrating hormone neurons pro‑ mote and stabilize sleep. Sleep 36: 1767–1768.
  • Grantyn A, Moschovakis AK, Kitama T (2004) Kitama T. Control of orienting movements: role of multiple tectal projections to the lower brainstem. Prog Brain Res 143: 423–438.
  • Haegelen C, Rouaud T, Daarnault P, Morandi X (2009) The subthalamic nu‑ cleus is a key‑structure of limbic basal ganglia functions. Med Hypoth‑ eses 72: 421–426.
  • Hamani C, Saint‑Cyr JA, Fraser J, Kaplitt M, Lozano AM (2004) The subtha‑ lamic nucleus in the context of movement disorders. Brain 127: 4–20.
  • Hammond C, Deniau JM, Rizk A, Féger J (1978a) Electrophysiological demonstration of an excitatory subthalamonigral pathway in the rat. Brain Res 151: 235–244.
  • Hammond C, Deniau JM, Rouzaire‑Dubois B, Féger J (1978b) Peripheral in‑ put to rat subthalamic nucleus, an electrophysiological study. Neurosci Lett 9: 171–176.
  • Hammond C, Rouzaire‑Dubois B, Feger J, Jackson A, Crossman AR (1983) Anatomical and electrophysiological studies on the reciprocal projec‑ tions between the subthalamic nucleus and nucleus tegmenti peduncu‑ lopontinus in the rat. Neuroscience 9: 41–52.
  • Honey CR, Hamani C, Kalia SK, Sankar T, Picillo M, Munhoz RP, Fasano A, Panisset M (2017) Deep Brain Stimulation Target Selection for Parkin‑ son’s Disease. Can J Neurol Sci 44: 3–8. Ibañez A, Gleichgerrcht E, Manes F (2010) Clinical effects of insular damage in humans. Brain Struct Funct 214: 397–410.
  • Iwamoto Y, Nishihara M, Takahashi M (1999) VMH lesions reduce exces‑ sive running under the activity‑stress paradigm in the rat. Physiol Be‑ hav 66: 803–808.
  • Lambert C, Zrinzo  L, Nagy Z, Lutti A, Hariz  M, Foltynie T, Draganski B, Ashburner J, Frackowiak R (2012) Confirmation of functional zones within the human subthalamic nucleus: Patterns of connectivity and sub‑parcellation using diffusion weighed imaging. Neuroimage 60: 83–94.
  • Le Jeune F, Peron J, Biseul I, Fournier S, Sauleau P, Drapier S, Haegelen C, Drapier D, Millet B, Garin E, Herry JY, Malbert CH, Verin M (2008) Subtha‑ lamic nucleus stimulation affects orbitofrontal cortex in facial emotion recognition: a PET study. Brain 131: 1599–1608.
  • Lizarraga KJ, Jagid JR, Luca CC (2016) Comparative effects of unilateral and bilateral subthalamicnucleus deep brain stimulation on gait kinematics in Parkinson’s disease: a randomized, blinded study. J Neurol 263: 1652–1656.
  • Marani E, Heida T, Lakke EA, Usunoff KG (2008) The subthalamic nucleus. Part I: development, cytology, topography and connections. Adv Anat Embryol Cell Biol 198: 1–113.
  • Milardi D, Arrigo A, Anastasi G, Cacciola A, Marino S, Mormina E, Calamuneri  A, Bruschetta D, Cutroneo G, Trimarchi F, Quartarone A (2016) Extensive Direct Subcortical Cerebellum Basal Ganglia Connec‑ tions in Human Brain as Revealed by Constrained Spherical Deconvolu‑ tion Tractography. Front Neuroanat 10: 29.
  • Moers‑Hornikx VM, Vles JS, Tan SK, Cox K, Hoogland G, Steinbusch WM, Temel Y (2011) Cerebellar nuclei are activated by high‑frequency stimu‑ lation of the subthalamic nucleus. Neurosci Lett 496: 111–115.
  • Morgan LO (1927) Symptoms and fiber degeneration following experimen‑ tal lesions in the subthalamic nucleus of luys in the dog. J Comp Neurol 44: 379–397.
  • Narita K, Murata T, Honda K, Nishihara M, Takahashi M, Higuchi T (2002) Subthalamic  locomotor region is involved in running activity origi‑ nating in the rat ventromedial hypothalamus. Behav Brain Res 134: 275–281.
  • Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico‑basal ganglia‑thalamo‑cortical loop. Brain Res Lett 20: 91–127.
  • Paxinos G, Watson C (1998) The Rat Brain in Stereotaxic Coordinates. Aca‑ demic Press, New York. Phillips L, Litcofsky KA, Pelster M, Gelfand M, Ullman MT, Charles PD (2012) Subthalamic nucleus deep brain stimulation impacts language in early Parkinson’s disease. PLoS One 7: 8. Pötter  M, Herzog J, Siebner HR, Kopper F, Steigerwald F, Deuschl G, Volkmann J (2008) Subthalamic nucleus stimulation modulates audio‑ spinal reactions in Parkinson disease. Neurology 70: 1445–1451.
  • Ramirez‑Zamora A, Smith H, Youn Y, Durphy J, Shin DS, Pilitsis JG (2016) Hyperhidrosis associated with  subthalamic  deep brain stimulation in Parkinson’s disease: Insights into central autonomic functional anato‑ my. J Neurol Sci 366: 59–64.
  • Rinvik E, Ottersen OP (1993) Terminals of subthalamonigral fibres are en‑ riched with glutamate‑like immunoreactivity: an electron microscopic, immunogold analysis in the cat. J Chem Neuroanat 6: 19–30.
  • Romanelli P, Bronte‑Stewart H, Heit G, Schaal DW, Esposito V (2004a) The functional organization of the sensorimotor region of the subthalamic nucleus. Stereotact Funct Neurosurg 82: 222–229.
  • Romanelli P, Heit G, Hill BC, Kraus A, Hastie T, Bronte‑Stewart HM (2004b) Mi‑ croelectrode recording revealing a somatotopic body map in the subtha‑ lamic nucleus in humans with Parkinson disease. J Neurosurg 100: 611–618.
  • Rouzaire‑Dubois B, Scarnati E (1985) Bilateral corticosubthalamic nucleus projections: an electrophysiological study in rats with chronic cerebral lesions. Neuroscience 15: 69–79.
  • Royce GJ, Mourey RJ (1985) Efferent connections of the centromedian and parafascicular thalamic nuclei: an autoradiographic investigation in the cat. J Comp Neurol 235: 277–300.
  • Sadikot AF, Parent A, Francois C (1990) The centre median and parafascic‑ ular thalamic nuclei project respectively to the sensorimotor and asso‑ ciative‑limbic striatal territories in the squirrel monkey. Brain Res 510: 161–165.
  • Saper CB, Loewy AD (1982) Projections of the pedunculopontine tegmen‑ tal nucleus in the rat: evidence for additional extrapyramidal circuitry. Brain Res 252: 367–372.
  • Saper CB,  Swanson LW,  Cowan WM (1976) The  efferent  connections  of the ventromedial nucleus of the hypothalamus of the rat. J Comp Neu‑ rol 169: 409–442.
  • Schroeder U, Kuehler A, Lange KW, Haslinger B, Tronnier VM, Krause M, Pfister R, Boecker H, Ceballos‑Baumann AO (2003) Subthalamic nucleus stimulation affects a frontotemporal network: a PET study. Ann Neurol 54: 445–450.
  • Schroeder U, Kuehler A, Haslinger B, Erhard P, Fogel  W, Tronnier VM, Lange  KW, Boecker H, Ceballos‑Baumann AO (2002) Subthalamic nu‑ cleus stimulation affects striato‑anterior cingulate cortex circuit in a re‑ sponse conflict task: a PET study. Brain 125: 1995–2004.
  • Sugimoto T, Hattori T, Mizuno N, Itoh K, Sato M (1983) Direct projections from the centre median‑parafascicular complex to the subthalamic nu‑ cleus in the cat and rat. J Comp Neurol 214: 209–216.
  • Volkmann J, Daniels C, Witt K (2010) Neuropsychiatric effects of subthalam‑ ic neurostimulation in Parkinson disease. Nat Rev Neurol 6: 487–498.
  • Yelnik J, Percheron G (1979) Subthalamic neurons in primates: a quantita‑ tive and comparative analysis. Neuroscience 4: 1717–1743.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-67cd6bbe-e22a-4919-a101-7de2c8fff72c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.