PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 84 | 1 |

Tytuł artykułu

Acid alpha-galactosidase is involved in D-chiro-inositol accumulation during tartary buckwheat germination

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Tartary buckwheat seed and especially its sprouts are rich in D-chiroinositol (DCI). The research was to evaluate when DCI was most accumulated in tartary buckwheat sprouts. In addition, we explored the activity and expression pattern of α-galactosidase during tartary buckwheat seed germination. The results showed that DCI contents steadily increased at early stage of germination and reached the highest level of 33.42 μg/seed at 24 h during the 72 h trail. However, the total fagopyritol contents sharply decreased from 214.6 μg/seed to 46 μg/seed at the end of the germination. The activity of acid α-galactosidase increased gradually to the peak of 0.36 nkat/seed at 24 h after the primed seed imbibition. We cloned the gene fragment of α-galactosidase in tartary buckwheat for the first time. The deduced amino acid sequence is 93% identical to that of P. vulgaris. The quantitative PCR result of gene expression pattern was consistent with its enzyme activity during seed germination.

Wydawca

-

Rocznik

Tom

84

Numer

1

Opis fizyczny

p.53-58,fig.,ref.

Twórcy

autor
  • School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China
autor
  • School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China
autor
  • School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China
autor
  • School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China

Bibliografia

  • 1. Zhang ZL, Zhou ML, Tang Y, Li FL,Tang YX, Shao JR, et al. Bioactive compounds in functional buckwheat food. Food Res Int.2012;49(1):389–395. http://dx.doi.org/10.1016/j.foodres.2012.07.035
  • 2. Kawa JM, Taylor CG, Przybylski R. Buckwheat concentrate reduces serum glucose in streptozotocin-diabetic rats. J Agric Food Chem.2003;51(25):7287–7291. http://dx.doi.org/10.1021/jf0302153
  • 3. Zhang HW, Zhang YH, Lu MJ, Tong WJ, Cao GW. Comparison of hypertension, dyslipidaemia and hyperglycaemia between buckwheat seed‐consuming and non‐consuming Mongolian‐Chinese populationsin Inner Mongolia, China. Clin Exp Pharmacol Physiol. 2007;34(9):838–844. http://dx.doi.org/10.1111/j.1440-1681.2007.04614.x
  • 4. Larner J, Price JD, Heimark D, Smith L, Rule G, Piccariello T, et al. Isolation, tructure, synthesis, and bioactivity of a novel putative insulin mediator. A galactosamine chiroinositol pseudo-disaccharide Mn2+chelate with insulin-like activity. J Med Chem. 2003;46(15):3283–3291.http://dx.doi.org/10.1021/jm030071j
  • 5. Ortmeyer HK, Bodkin NL, Lilley K, Larner J, Hansen BC. Chiroinositol deficiency and insulin resistance. I. Urinary excretion rate of chiroinositol is directly associated with insulin resistance in spontaneouslydiabetic rhesus monkeys. Endocrinology. 1993;132(2):640–645.
  • 6. Suzuki S, Kawasaki H, Satoh Y, Ohtomo M, Hirai M, Hirai A, et al. Urinary chiro-inositol excretion is an index marker of insulin sensitivityin Japanese type II diabetes. Diabetes Care. 1994;17(12):1465–1468.http://dx.doi.org/10.2337/diacare.17.12.1465
  • 7. Yang N, Ren G. Application of near-infrared reflectance spectroscopy to the evaluation of rutin and D-chiro-inositol contents in tartary buckwheat. J Agric Food Chem. 2008;56(3):761–764. http://dx.doi.org/10.1021/jf072453u
  • 8. Horbowicz M, Brenac P, Obendorf RL. Fagopyritol B1, O-α-Dgalactopyranosyl-( 1→2)-D-chiro-inositol, a galactosyl cyclitol inmaturing buckwheat seeds associated with desiccation tolerance.Planta. 1998;205(1):1–11. http://dx.doi.org/10.1007/s004250050290
  • 9. Szczecinski P, Gryff KA, Horbowicz M, Obendorf RL. NMR investigation of the structure of fagopyritol B1 from buckwheat seeds. Bull PolAcad Sci Chem. 1998;46:9–13.
  • 10. Ma JM, Horbowicz M, Obendorf RL. Cyclitol galactosides in embryos of buckwheat stem–leaf–seed explants fed d-chiro-inositol, myoinositolor d-pinitol. Seed Sci Res. 2005;15(4):329–338. http://dx.doi.org/10.1079/SSR2005221
  • 11. Luo YW, Xie WH, Jin XX, Wang Q, Zai XM. Effects of germination on iron, zinc, calcium, manganese, and copper availability from cerealsand legumes. Cyta J Food. 2013;11(4):318–323. http://dx.doi.org/10.1080/19476337.2012.757756
  • 12. Blochl A, Peterbauer T, Richter A. Inhibition of raffinose oligosaccharide breakdown delays germination of pea seeds. J Plant Physiol.2007;164(8):1093–1096. http://dx.doi.org/10.1016/j.jplph.2006.10.010
  • 13. Lahuta LB, Goszczyńska J. Inhibition of raffinose family oligosaccharides and galactosyl pinitols breakdown delays germination of wintervetch (Vicia villosa Roth.) seeds. Acta Soc Bot Pol. 2009;78(3):203–208.http://dx.doi.org/10.5586/asbp.2009.025
  • 14. Yang N. Ren G. Determination of D-chiro-inositol in tartary buckwheat using high-performance liquid chromatography with an evaporative light-scattering detector. J Agric Food Chem. 2008;56(3):757–760.http://dx.doi.org/10.1021/jf0717541
  • 15. Galhaut L, Lespinay A, Walker DJ, Bernal MP, Correal E, Lutts S. Seed priming of Trifolium repens L. improved germination and earlyseedling growth on heavy metal-contaminated soil. Water Air SoilPollut. 2014;225(4):1–15. http://dx.doi.org/10.1007/s11270-014-1905-1
  • 16. Taie HA, Abdelhamid MT, Dawood MG, Nassar RM. Pre-sowing seed treatment with proline improves some physiological, biochemicaland anatomical attributes of Faba bean plants under sea water stress.J Appl Sci Res. 2013;9(4):2853–2867.
  • 17. Daldoul S, Toumi I, Reustle GM, Krczal G, Ghorbel A, Mliki A, et al. Molecular cloning and characterisation of a cDNA encoding a putativealkaline alpha-galactosidase from grapevine (Vitis vinifera L.) that is differentially expressed under osmotic stress. Acta Physiol Plant.2012;34(3):891–903. http://dx.doi.org/10.1007/s11738-011-0887-5
  • 18. Gaudreault PR, Webb JA. Alkaline α-galactosidase activity and galactose metabolism in the family Cucurbitaceae. Plant Sci. 1986;45(2):71–75. http://dx.doi.org/10.1016/0168-9452(86)90039-7
  • 19. Schaffer A, Zhifang G. Alkaline alpha-galactosidase. US 6,607,901 B1 (Google Patents) 2003.
  • 20. Guimaraes VM, Rezende ST, Moreira MA, Barros EG, Felix CR. Characterization of alpha-galactosidases from germinating soybeanseed and their use for hydrolysis of oligosaccharides. Phytochemistry.2001;58(1):67–73. http://dx.doi.org/10.1016/S0031-9422(01)00165-0
  • 21. Atalide GM, Borges EE, Goncalves JF, Guimaraes VM, Bicalho EM, Flores AV. Activities of a-galactosidase and polygalacturonase during hydration of Dalbergia nigra [(Vell.) Fr All. ex Benth.] seeds at differenttemperatures. J Seed Sci. 2013;35(1):92–98. http://dx.doi.org/10.1590/S2317-15372013000100013
  • 22. Schillinger JA, Dierking EC, Bilyeu KD. Soybeans having high germination rates and ultra-low raffinose and stachyose content. US8,471,107B2 (Google Patents) 2013.
  • 23. Gajdhane S, Jadhav U, Dandge P. Biochemical study of α-galactosidase from cowpeas (Vigna unguiculata). Indian Streams Research Journal.2014;4(1):1–5.
  • 24. Jia CF, Zhao WC, Cai MM, Li J, Li J. Effect of sand priming treatment on seed germination of tartary buckwheat. Seed. 2011;30(1):96–98.
  • 25. Steadman KJ, Burgoon MS, Schuster RL, Lewis BA, Edwardson SE, Obendorf RL. Fagopyritols, D-chiro-inositol, and other solublecarbohydrates in buckwheat seed milling fractions. J Agric FoodChem. 2000;48(7):2843–2847. http://dx.doi.org/10.1021/jf990709t
  • 26. McCleary B, Matheson N. α-D-galactosidase activity and galactomannan and galactosylsucrose oligosaccharide depletion in germinatinglegume seeds. Phytochemistry. 1974;13(9):1747–1757. http://dx.doi.org/10.1016/0031-9422(74)85084-3
  • 27. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res.1997;25(24):4876–4882. http://dx.doi.org/10.1093/nar/25.24.4876
  • 28. Keller F, Pharr DM. Metabolism of carbohydrates in sinks and sources: galactosyl-sucrose oligosaccharides. Photoassimilate distribution inplants and crops: source-sink relationships. New York, NY: MarcelDekker; 1996.
  • 29. Hu, YH, Yu YT, Piao CH, LiuJM, Yu HS. Methyl jasmonate-and salicylic acid-induced d-chiro-inositol production in suspension cultures of buckwheat (Fagopyrum esculentum). Plant Cell Tiss Org.2011;106(3):419–424. http://dx.doi.org/10.1007/s11240-011-9938-2
  • 30. Wang L, Li XD, Niu M, Wang R, Chen ZX. Effect of additives on flavonoids, d-chiro-Inositol and trypsin inhibitor during the germinationof tartary buckwheat seeds. J Cereal Sci. 2013;58(2):348–354. http://dx.doi.org/10.1016/j.jcs.2013.07.004
  • 31. Xu JG, Hu QP. Changes in γ-aminobutyric acid content and related enzyme activities in Jindou 25 soybean (Glycine max L.) seeds during germination. LWT – Food Sci Technol. 2014;55(1):341–346. http://dx.doi.org/10.1016/j.lwt.2013.08.008
  • 32. Makino Y, Soga N, Oshita S, Kawagoe Y, Tanaka A. Stimulation of γ-aminobutyric acid production in vine-ripe tomato (Lycopersiconesculentum Mill.) fruits under modified atmospheres. J Agric FoodChem. 2008;56(16):7189–7193. http://dx.doi.org/10.1021/jf801516e
  • 33. Farooq M, Basra SM, Tabassm R, Afzal Z. Enhancing the performance of direct seeded fine rice by seed priming. Plant Prod Sci.2006;9(4):446–456. http://dx.doi.org/10.1626/pps.9.446
  • 34. Randhir R, Lin YT, Shetty K. Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in responseto peptide and phytochemical elicitors. Asia Pac J Clin Nutr.2004;13(3):295–307.
  • 35. Zalewski K, Nitkiewicz B, Lahuta LB, Głowacka K, Socha A, Amarowicz R. Effect of jasmonic acid–methyl ester on the compositionof carbohydrates and germination of yellow lupine (Lupinus luteusL.) seeds. J Plant Physiol. 2010;167(12):967–973. http://dx.doi.org/10.1016/j.jplph.2010.01.020
  • 36. Pathak M. Soaked and germinated soybean seeds for blood sugar control: a preliminary study. Natural Product Radiance. 2005;4:405–409.
  • 37. Viana SF , Guimarães VM, José IC, Oliveira MG, Costa NM,Barros EG, et al. Hydrolysis of oligosaccharides in soybean flour by soybeanα-galactosidase. Food Chem. 2005;93(4):665–670. http://dx.doi.org/10.1016/j.foodchem.2004.09.045
  • 38. Feurtado JA, Banik M, Bewley JD. The cloning and characterization of α‐galactosidase present during and following germination of tomato (Lycopersicon esculentum Mill.) seed. J Exp Bot. 2001;52(359):1239– 1249. http://dx.doi.org/10.1093/jexbot/52.359.1239
  • 39. Carmi N, Zhang G, Petreikov M, Gao Z, Eyal Y, Granot D, et al. Cloning and functional expression of alkaline α‐galactosidase frommelon fruit: similarity to plant SIP proteins uncovers a novel familyof plant glycosyl hydrolases. Plant J. 2003;33(1):97–106. http://dx.doi.org/10.1046/j.1365-313X.2003.01609.x
  • 40. Zhu A, Goldstein J. Cloning and functional expression of a cDNA encoding coffee bean α-galactosidase. Gene. 1994;140(2):227–231. http://dx.doi.org/10.1016/0378-1119(94)90548-7

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-6795575f-36de-4d17-a470-c69270e34671
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.