Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 07 | 2A |

Tytuł artykułu

The application of molecular markers in the process of selection


Warianty tytułu

Języki publikacji



Molecular markers are modern diagnostic tools, which may help breeders to solve practical problems. They facilitate cultivar Identification, the determination of genetic similarities among breeding stocks and enable the calculation of polymorphism level, heterozygosity or self-pollination rate. But the main expectation with respect to molecular markers is their potential use in marker-assisted selection (MAS). There are four major strategies of finding a molecular marker tightly linked to a target gene of agronomie importance. The first approach takes advantage of the nearly isogenic lines (NILs) which are differentiated only by the allelic sets in the gene of interest and in the adjacent chromosomal region. The second strategy involves bulked segregant analysis (BSA) for identification of markers linked to a single gene. The third involves the genetic dissection of more complex traits, which leads to the identification of quantitative trait loci (QTL) and their markers. The fourth strategy of marker identification includes computer databases (sequence and mapping data). The usefulness of these strategies is discussed in this paper. Some consequences of the application of BSA for gene tagging are described.








Opis fizyczny



  • Department of Genetics and Plant Breeding, Agricultural University, Slowackiego 17, 71-434 Szczecin, Poland


  • 1. Miedaner, T., Glass, C., Dreyer, F., Wilde, P., Wortmann, H. and Geiger, H. H. Mapping of genes for male-fertility restoration in “Pampa” CMS winter rye (Secale cereale L.). Theor. Appl. Genet. 101 (2000) 1226-1233.
  • 2. Coryell, V. H., Jessen, H., Schupp, J. M., Webb, D. and Keim, P. Allele- specific hybridization markers for soybean. Theor. Appl. Genet. 98 (1999) 690-696.
  • 3. Ahmad, M. Molecular marker-assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markers. Theor. Appl. Genet. 101 (2000) 892-896.
  • 4. Mohler, V., Hsam, S. L. K., Zeller, F. J. and Wenzel, G. An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat. Plant Breed. 120 (2001) 448-450.
  • 5. Schachermayr, G., Feuillet, C. and Keller, B. Molecular markers for the determination of the wheat leaf rust resistance gene Lr 10 in diverse genetic background. Mol. Breed. 3 (1997) 65-74.
  • 6. Hackauf, B. and Wehling, P. Development of microsatellite markers in rye: map construction. Proceed. EUCARPIA Rye Meet. July 4-7, Radzików, Poland (2001) 333-340.
  • 7. Gupta, P. K., Varshney, R. K., Sharma, P. C. and Ramesh, B. Molecular markers and their application in wheat breeding. Plant Breed. 118 (1999) 369-390.
  • 8. Kelly, J. D. Use of random amplified polymorphic DNA markers in breeding for major gene resistance to plant pathogens. Hort. Sci. 30 (1995) 461-465.
  • 9. Staub, J. E., Serquen, F. C. and Gupta, M. Genetic markers, map construction and their application in breeding. Hort. Sci. 31 (1996) 729-741.
  • 10. Sorrells, M. E. and Wilson, W. A. Direct classification and selection of superior alleles for crop improvement. Crop Sci. 37 (1997) 691-697.
  • 11. Kelly, J. D. and Miklas, P. N. The role of RAPD markers in breeding for disease resistance in common bean. Mol. Breed. 4 (1998) 1-11.
  • 12. Tanksley, S. D., Ganal, M. W. and Martin, G. B. Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet. 11 (1995) 63-68.
  • 13. Miftahudin, Scoles G. J., Gustafson, J. P. AFLP markers tightly linked to the aluminium-tolerance gene Alt3 in rye (Secale cereale L.) Theor. Appl. Genet. 104 (2002) 626-631.
  • 14. Michelmore, R. W., Paran, I. and Kesseli, R.V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88 (1991) 9828-9832.
  • 15. Haley, S. D., Afanador, L. and Kelly, J. D. Selection for monogenic pest resistance traits with coupling- and repulsion-phase RAPD markers. Crop Sci. 34 (1994) 1061-1066.
  • 16. Page, D., Delclos, B., Aubert, G., Bonavent, J. F. and Mousset-Declas, C. Sclerotinia rot resistance in red clover: identification of RAPD markers using bulked segregant analysis. Plant Breed. 116 (1997) 73-78.
  • 17. Röder, M. S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.-H., Leroy, P. and Ganal, M. W. A microsatellite map of wheat. Genetics 149 (1998) 2007-2023.
  • 18. Liu, Z. W., Biyashev, Saghai Maroof M. A. Development of simple sequence repeat markers and their integration into a barley linkage map. Theor. Appl. Genet. 93 (1996) 869-876.
  • 19. Senior, M. L., Chin, E. C. L., Smith, J. S. C. and Stuber, C. W. Simple sequence repeat markers developed from maize sequences found in the GenBank database: Map construction. Crop Sci. 36 (1996) 1676-1683.
  • 20. Hackauf, B. and Wehling, P. Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed. 121 (2002) 17-25.
  • 21. Lander, E. S. and Botstein, D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121 (1989) 185-199.
  • 22. Bradeen, J. M. and Simon, P. W. Conversion of an AFLP fragment linked to the carrot Y2 locus to a simple, codominant, PCR-based marker form. Theor. Appl. Genet. 97 (1998) 960-967.
  • 23. Hemandez, P., Martin, A. and Dorado G. Development of SCARs by direct sequencing of RAPD products: a practical tool for the introgression and marker-assisted selection of wheat. Mol. Breed. 5 (1999) 245-253.
  • 24. Shan, X., Blake, T. K. and Talbert, L. E. Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor. Appl. Genet. 98 (1999) 1072-1078.
  • 25. Huang, C. C., Cui, Y. Y., Weng, C. R., Zabel, P. and Lindhout, P. Development of diagnostic PCR markers closely linked to the tomato powdery mildew resistance gene Ol-1 on chromosome 6 of tomato. Theor. Appl. Genet. 101 (2000) 918-924.
  • 26. Huang, N., Angeles, E. R., Domingo, J., Magpantay, G., Sinh, S., Zhang, G., Kumaravadivel, N., Bennett, J. and Khush, G. S. Pyramiding of bacterial blight resistance genes in rice: marker assisted selection using RFLP and PCR. Theor. Appl. Genet. 95 (1997) 313-320.
  • 27. Singh, S., Sidhu, J. S., Huang, N., Vikal, Y., Li, Z., Brar, D. S., Dhaliwal, H. S. and Khush, G. S. Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor. Appl. Genet. 102 (2001) 1011-1015.
  • 28. Hansen, M., Hallden, C., Nilsson, N.-O. and Säll, T. Marker-assisted selection of restored male-fertile Brassica napus plants using a set of dominant RAPD markers. Mol. Breed. 3 (1997) 449-456.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.