PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 87 | 2 |

Tytuł artykułu

Regulatory roles of sugars in plant growth and development

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In recent years, several studies have focused on the factors and mechanisms that regulate plant growth and development, as well as the functioning of signaling pathways in plant cells, unraveling the involvement of sugars in the processes regulating such growth and development. Saccharides play an important role in the life of plants: they are structural and storage substances, respiratory substrates, and intermediate metabolites of many biochemical processes. Sucrose is the major transport form of assimilates in plants. Sugars can also play an important role in the defense reactions of plants. However, it has been shown that glucose, sucrose, or trehalose-6-phosphate (Tre6P) can regulate a number of growth and metabolic processes, acting independently of the basal functions; they can also act as signaling molecules. Changes in the concentration, qualitative composition, and transport of sugars occur continuously in plant tissues, during the day and night, as well as during subsequent developmental stages. Plants have developed an efficient system of perception and transmission of signals induced by lower or higher sugar availability. Changes in their concentration affect cell division, germination, vegetative growth, flowering, and aging processes, often independently of the metabolic functions. Currently, the mechanisms of growth regulation in plants, dependent on the access to sugars, are being increasingly recognized. The plant growth stimulating system includes hexokinase (as a glucose sensor), trehalose-6-phosphate, and TOR protein kinase; the lack of Tre6P or TOR kinase inhibits the growth of plants and their transition to the generative phase. It is believed that the plant growth inhibition system consists of SnRK1 protein kinases and C/S1 bZIP transcription factors. The signal transduction routes induced by sugars interact with other pathways in plant tissues (for example, hormonal pathways) creating a complex communication and signaling network in plants that precisely controls plant growth and development.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

87

Numer

2

Opis fizyczny

Article 3583 [13p.],fig.,ref.

Twórcy

autor
  • Institute of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland

Bibliografia

  • 1. Chaiwanon J, Wang W, Zhu JY, Oh E, Wang ZY. Information integration and communication in plant growth regulation. Cell. 2016;164:1257–1268. https://doi.org/10.1016/j.cell.2016.01.044
  • 2. Griffiths CA, Paul MJ, Foyer CH. Metabolite transport and associated sugar signalling systems underpinning source/sink interactions. Biochim Biophys Acta Bioenergetics. 2016;1857:1715–1725. https://doi.org/10.1016/j.bbabio.2016.07.007
  • 3. Martín-Fontecha ES, Tarancón C, Cubas P. To grow or not to grow, a power-saving program induced in dormant buds. Curr Opin Plant Biol. 2018;41:102–109. https://doi.org/10.1016/j.pbi.2017.10.001
  • 4. Smeekens S, Ma J, Hanson J, Rolland F. Sugar signal and molecular networks controlling plant growth. Curr Opin Plant Biol. 2010;13:274–279. https://doi.org/10.1016/j.pbi.2009.12.002
  • 5. Eveland AL, Jackson DP. Sugars, signalling, and plant development. J Exp Bot. 2012;63:3367–3377. https://doi.org/10.1093/jxb/err379
  • 6. Yuan TT, Xu HH, Zhang KX, Guo TT, Lu YT. Glucose inhibits root meristem growth via ABA INSENSITIVE 5, which represses PIN1 accumulation and auxin activity in Arabidopsis. Plant Cell Environ. 2014;37:1338–1350. https://doi.org/10.1111/pce.12233
  • 7. Li L, Sheen J. Dynamic and diverse sugar signaling. Curr Opin Plant Biol. 2016;33:116– 125. https://doi.org/10.1016/j.pbi.2016.06.018
  • 8. Baena-González E, Hanson J. Shaping plant development through the SnRK1-TOR metabolic regulators. Curr Opin Plant Biol. 2017;35:152–157. https://doi.org/10.1016/j.pbi.2016.12.004
  • 9. Ruan YL. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol. 2014;65:33–67. https://doi.org/10.1146/annurev-arplant-050213-040251
  • 10. Ciereszko I. Sucrose metabolism in plant tissues under stress conditions: key enzymes, localization and function. In: Maksymiec W, editor. Compartmentation of responses to stresses in higher plants, true or false. Kerala: Transworld Research Network; 2009. p. 193–218.
  • 11. Żebrowska E, Milewska M, Ciereszko I. Mechanisms of oat (Avena sativa L.) acclimation to phosphate deficiency. PeerJ. 2017;5:e3989. https://doi.org/10.7717/peerj.3989
  • 12. Sami F, Yusuf M, Faizan M, Faraz A, Hayat S. Role of sugars under abiotic stress. Plant Physiol Biochem. 2016; 109:54–61. https://doi.org/10.1016/j.plaphy.2016.09.005
  • 13. Łukaszuk E, Rys M, Możdżeń K, Stawoska I, Skoczowski A, Ciereszko I. Photosynthesis and sucrose metabolism in leaves of Arabidopsis thaliana aos, ein4 and rcd1 mutants as affected by wounding. Acta Physiol Plant. 2017;39:17. https://doi.org/10.1007/s11738-016-2309-1
  • 14. Fernandez O, Ishihara H, George GM, Mengin V, Flis A, Sumner D, et al. Leaf starch turnover occurs in long days and in falling light at the end of the day. Plant Physiol. 2017;174:2199–2212. https://doi.org/10.1104/pp.17.00601
  • 15. Morkunas I, Ratajczak L. The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiol Plant. 2014;36:1607–1619. https://doi.org/10.1007/s11738-014-1559-z
  • 16. Morkunas I, Woźniak A, Formela M, Marczak Ł, Narożna D, Borowiak-Sobkowiak B, et al. Pea aphid infestation induces changes in flavonoids, antioxidative defence, soluble sugars and sugar transporter expression in leaves of pea seedlings. Protoplasma. 2016;253:1063–1079. https://doi.org/10.1007/s00709-015-0865-7
  • 17. Formela M, Samardakiewicz S, Marczak Ł, Nowak W, Narożna D, Bednarski W, et al. Effects of endogenous signals and Fusarium oxysporum on the mechanism regulating genistein synthesis and accumulation in yellow lupine and their impact on plant cell cytoskeleton. Molecules. 2014;19:13392–13421. https://doi.org/10.3390/molecules190913392
  • 18. Bezrutczyk M, Yang J, Eom J, Prior M, Sosso D, Hartwig T, et al. Sugar flux and signaling in plant–microbe interactions. Plant J. 2018;93:675–685. https://doi.org/10.1111/tpj.13775
  • 19. Ciereszko I, Kleczkowski LA. Expression of several genes involved in sucrose/starch metabolism as affected by different strategies to induce phosphate deficiency in Arabidopsis. Acta Physiol Plant. 2005;27:147–155. https://doi.org/10.1007/s11738-005-0018-2
  • 20. Mao J, Li W, Mi B, Dawuda MM, Calderon-Urrea A, Ma Z, et al. Different exogenous sugars affect the hormone signal pathway and sugar metabolism in ‘Red Globe’ (Vitis vinifera L.) plantlets grown in vitro as shown by transcriptomic analysis. Planta. 2017;246:537. https://doi.org/10.1007/s00425-017-2712-x
  • 21. Polit JT, Ciereszko I. Sucrose synthase activity and carbohydrates content in relation to phosphorylation status of Vicia faba root meristems during reactivation from sugar depletion. J Plant Physiol. 2012;169:1597–1606. https://doi.org/10.1016/j.jplph.2012.04.017
  • 22. Kunz S, Pesquet E, Kleczkowski LA. Functional dissection of sugar signals affecting gene expression in Arabidopsis thaliana. PLoS One. 2014;9:e100312. https://doi.org/10.1371/journal.pone.0100312
  • 23. Sheen J. Master regulators in plant glucose signaling networks. J Plant Biol. 2014;57:67– 79. https://doi.org/10.1007/s12374-014-0902-7
  • 24. Figueroa CM, Lunn JE. A tale of two sugars: trehalose 6-phosphate and sucrose. Plant Physiol. 2016;172:7–27. https://doi.org/10.1104/pp.16.00417
  • 25. O’Hara LE, Paul MJ, Wingler A. How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate. Mol Plant. 2013;6:261–274. https://doi.org/10.1093/mp/sss120
  • 26. Jang JC, Leόn P, Sheen J. Hexokinase as a sugar sensor in higher plants. Plant Cell. 1997;9:5–19. https://doi.org/10.1105/tpc.9.1.5
  • 27. Chiou TJ, Bush DR. Sucrose is a signal molecule in assimilate partitioning. Proc Natl Acad Sci USA. 1998;95:4784–4788. https://doi.org/10.1073/pnas.95.8.4784
  • 28. Rolland F, Baena-Gonzalez E, Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol. 2006;57:675–709. https://doi.org/10.1146/annurev.arplant.57.032905.105441
  • 29. Ciereszko I. Sugar sensing and signal transduction in plant cells. Postępy Biologii Komórki. 2007;34:695–713.
  • 30. Lastdrager J, Hanson J, Smeekens S. Sugar signals and the control of plant growth and development. J Exp Bot. 2014;65:799–807. https://doi.org/10.1093/jxb/ert474
  • 31. Matsoukas IG. Crosstalk between photoreceptor and sugar signaling modulates floral signal transduction. Front Physiol. 2017;8:382. http://doi.org/10.3389/fphys.2017.00382
  • 32. Price J, LI TC, Kang SG, NA JK, Jang JC. Mechanism of glucose signaling during germination of Arabidopsis. Plant Physiol. 2003;132:1424–1338. https://doi.org/10.1104/pp.103.020347
  • 33. Dekkers BJ, Schuurmans JA, Smeekens SC. Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis. Plant Mol Biol. 2008;67:151–167. https://doi.org/10.1007/s11103-008-9308-6
  • 34. Osuna D, Prieto P, Aguilar M. Control of seed germination and plant development by carbon and nitrogen availability. Front Plant Sci. 2015;6:1023. https://doi.org/10.3389/fpls.2015.01023
  • 35. Zhong C, Xu H, Ye S, Wang S, Li L, Zhang S, et al. Gibberellic acid-stimulated Arabidopsis6 serves as an integrator of gibberellin, abscisic acid, and glucose signaling during seed germination in Arabidopsis. Plant Physiol. 2015;169:2288–2303. https://doi.org/10.1104/pp.15.00858
  • 36. Gibson SI. Control of plant development and gene regulation by sugar signaling. Curr Opin Plant Biol. 2005;8:93–102. https://doi.org/10.1016/j.pbi.2004.11.003
  • 37. Shahri W, Ahmad SS, Tahir I. Sugar signaling in plant growth and development. In: Hakeem K, Rehman R, Tahir I, editors. Plant signaling: understanding the molecular crosstalk. New Delhi: Springer; 2014. https://doi.org/10.1007/978-81-322-1542-4_5
  • 38. Cho YH, Yoo SD. Signaling role of fructose mediated by FINS1/FBP in Arabidopsis thaliana. PLoS Genet. 2011;7(1):e1001263. https://doi.org/10.1371/journal.pgen.1001263
  • 39. Hirsche J, Fernández JMG, Stabentheiner E, Großkinsky DK, Roitsch T. Differential effects of carbohydrates on Arabidopsis pollen germination. Plant Cell Physiol. 2017;58:691–701. https://doi.org/10.1093/pcp/pcx020
  • 40. van Dingenen J, de Milde L, Vermeersch M, Maleux K, de Rycke R, de Bruyne M, et al. Chloroplasts are central players in sugar-induced leaf growth. Plant Physiol. 2016;171:590–605. https://doi.org/10.1104/pp.15.01669
  • 41. Kelly G, Sade N, Doron-Faigenboim A, Lerner S, Shatil-Cohen A, Yeselson Y, et al. Sugar and hexokinase suppress expression of PIP aquaporins and reduce leaf hydraulics that preserves leaf water potential. Plant J. 2017;91:325–339. https://doi.org/10.1111/tpj.13568
  • 42. Banaś AK, Aggarwal C, Łabuz J, Sztatelman O, Gabryś H. Blue light signalling in chloroplast movements. J Exp Bot. 2012;63:1559–1574. https://doi.org/10.1093/jxb/err429
  • 43. Eckstein A, Zięba P, Gabryś H. Sugar and light effects on the condition of the photosynthetic apparatus of Arabidopsis thaliana cultured in vitro. J Plant Growth Regul. 2012;31:90–101. https://doi.org/10.1007/s00344-011-9222-z
  • 44. Paul MJ, Primavesi LF, Jhurreea J, Zhang Y. Trehalose metabolism and signaling. Annu Rev Plant Biol. 2008;59:417–441. https://doi.org/10.1146/annurev.arplant.59.032607.092945
  • 45. Schluepmann H, Berke L, Sanchez-Perez GF. Metabolism control over growth: a case for trehalose-6-phosphate in plants. J Exp Bot. 2012;63:3379–3390. https://doi.org/10.1093/jxb/err311
  • 46. Usadel B, Bläsing OE, Gibon Y, Retzlaff K, Höhne M, Günther M, et al. Global transcript levels respond to small changes of the carbon status during progressive exhaustion of carbohydrates in Arabidopsis rosettes. Plant Physiol. 2008;146(4):1834–1861. https://doi.org/10.1104/pp.107.115592
  • 47. Yang L, Xu M, Koo Y, He J, Poethig RS. Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. eLife. 2013;2:e00260. https://doi.org/10.7554/eLife.00260
  • 48. Wingler A. Transitioning to the next phase: the role of sugar signaling throughout the plant life cycle. Plant Physiol. 2018;176:1075–1084. https://doi.org/10.1104/pp.17.01229
  • 49. Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA. Sugar demand, not auxin, is the initial regulator of apical dominance. Proc Natl Acad Sci USA. 2014;111:6092–6097. https://doi.org/10.1073/pnas.1322045111
  • 50. Barbier FF, Lunn JE, Beveridge CA. Ready, steady, go! A sugar hit starts the race to shoot branching. Curr Opin Plant Biol. 2015;25:39–45. https://doi.org/10.1016/j.pbi.2015.04.004
  • 51. Kebrom TH. A growing stem inhibits bud outgrowth – the overlooked theory of apical dominance. Front Plant Sci. 2017;8:1874. https://doi.org/10.3389/fpls.2017.01874
  • 52. de Schepper V, de Swaef T, Bauweraerts I, Steppe K. Phloem transport: a review of mechanisms and controls. J Exp Bot. 2013;64(16):4839–4850. https://doi.org/10.1093/jxb/ert302
  • 53. van Bel AJE, Hess PH. Hexoses as phloem transport sugars: the end of a dogma? J Exp Bot. 2008;59:261–272. https://doi.org/10.1093/jxb/erm294
  • 54. Liu DD, Chao WM, Turgeon R. Transport of sucrose, not hexose, in the phloem. J Exp Bot. 2012;63(11):4315–4320. https://doi.org/10.1093/jxb/ers127
  • 55. Eom JS, Chen LQ, Sosso D, Julius BT, Lin IW, Qu XQ, et al. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol. 2015;25:53–62. https://doi.org/10.1016/j.pbi.2015.04.005
  • 56. Liu X, Zhang Y, Yang C, Tian Z, Li J. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development. Sci Rep. 2016;6:24563. https://doi.org/10.1038/srep24563
  • 57. Matsoukas IG. Interplay between sugar and hormone signaling pathways modulate floral signal transduction. Front Genet. 2014;5:218. https://doi.org/10.3389/fgene.2014.00218
  • 58. King RW, Hisamatsu T, Goldschmidt EE, Blundell C. The nature of floral signals in Arabidopsis. I. Photosynthesis and a far-red independently regulate flowering by increasing expression of FLOWERING LOCUS T (FT). J Exp Bot. 2008;59(14):3811– 3820. https://doi.org/10.1093/jxb/ern231
  • 59. Yu S, Lian H, Wang JW. Plant developmental transitions: the role of microRNAs and sugars. Curr Opin Plant Biol. 2015;27:1–7. https://doi.org/10.1016/j.pbi.2015.05.009
  • 60. Morkunas I, Borek S, Formela M, Ratajczak L. Plant responses to sugar starvation. In: Chang CF, editor. Carbohydrates – comprehensive studies on glycobiology and glycotechnology. Rijeka: InTech; 2012. p. 409–438. https://doi.org/10.5772/51569
  • 61. Pourtau N, Jennings R, Pelzer E, Pallas J, Wingler A. Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis. Planta. 2006;224:556–568. https://doi.org/10.1007/s00425-006-0243-y
  • 62. Wingler A, Delatte TL, O’Hara LE, Primavesi LF, Jhurreea D, Paul MJ, et al. Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability. Plant Physiol. 2012;158:1241–1251. https://doi.org/10.1104/pp.111.191908
  • 63. Moore B, Zhou L, Rolland F, Hall Q, Cheng W-H, Liu YX, et al. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science. 2003;300:332– 336. https://doi.org/10.1126/science.1080585
  • 64. Sawicki M, Aït Barka E, Clément C, Vaillant-Gaveau N, Jacquard C. Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission. J Exp Bot. 2015;66:1707–1719. https://doi.org/10.1093/jxb/eru533
  • 65. Polit JT, Ciereszko I. In situ activities of hexokinase and fructokinase in relation to phosphorylation status of root meristem cells of Vicia faba during reactivation from sugar starvation. Physiol Plant. 2009;135:342–350. https://doi.org/10.1111/j.1399-3054.2008.01201.x
  • 66. Wang L, Ruan YL. Regulation of cell division and expansion by sugar and auxin signaling. Front Plant Sci. 2013;4:163. https://doi.org/10.3389/fpls.2013.00163
  • 67. Chevalier C, Bourdon M, Pirrello J, Cheniclet C, Gévaudant F, Frangne N. Endoreduplication and fruit growth in tomato: evidence in favour of the karyoplasmic ratio theory. J Exp Bot. 2014;65:2731–2746. https://doi.org/10.1093/jxb/ert366
  • 68. Xiong Y, Sheen J. The role of target of rapamycin signaling networks in plant growth and metabolism. Plant Physiol. 2014;164:499–512. https://doi.org/10.1104/pp.113.229948
  • 69. Bläsing OE, Gibon Y, Günther M, Höhne M, Morcuende R, Osuna D, et al. Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell. 2005;17:3257–3281. https://doi.org/10.1105/tpc.105.035261
  • 70. Łukaszuk E, Ciereszko I. Plants UDP-glucose pyrophosphorylase – an underestimate enzyme. Postępy Biologii Komórki. 2010;37:279–295.
  • 71. Decker D, Öberg C, Kleczkowski LA. Identification and characterization of inhibitors of UDP-glucose and UDP-sugar pyrophosphorylases for in vivo studies. Plant J. 2017;90:1093–1107. https://doi.org/10.1111/tpj.13531
  • 72. van Rensburg JHC, van den Ende W. UDP-glucose: a potential signaling molecule in plants? Front Plant Sci. 2018;8:2230. https://doi.org/10.3389/fpls.2017.02230
  • 73. Keunen E, Peshev D, Vangronsveld J, van den Ende W, Cuypers A. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ. 2013;36:1242–1255. https://doi.org/10.1111/pce.12061
  • 74. Ljung K, Nemhauser JL, Perata P. New mechanistic links between sugar and hormone signalling networks. Curr Opin Plant Biol. 2015;25:130–137. https://doi.org/10.1016/j.pbi.2015.05.022
  • 75. Baier M, Hemmann G, Holman R, Corke F, Card R, Smith C, et al. Characterization of mutants in Arabidopsis showing increased sugar-specific gene expression, growth, and developmental responses. Plant Physiol. 2004;134:81–91. https://doi.org/10.1104/pp.103.031674
  • 76. Li J, Wu L, Foster R, Ruan YL. Molecular regulation of sucrose catabolism and sugar transport for development, defence and phloem function. J Integr Plant Biol. 2017;59:322–335. https://doi.org/10.1111/jipb.12539
  • 77. Cho YH, Yoo D, Sheen J. Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell. 2006;127:579–589. https://doi.org/10.1016/j.cell.2006.09.028
  • 78. Feng J, Zhao S, Chen X, Wang W, Dong W, Chen J, et al. Biochemical and structural study of Arabidopsis hexokinase 1. Acta Crystallogr D Biol Crystallogr. 2015;71:367–375. https://doi.org/10.1107/S1399004714026091
  • 79. Cho JI, Ryoo N, Eom JS, Lee DW, Kim HB, Jeong SW, et al. Role of the rice hexokinases OsHXK5 and OsHXK6 as glucose sensors. Plant Physiol. 2009;149:745–759. https://doi.org/10.1104/pp.108.131227
  • 80. Kim HB, Cho JI, Ryoo N, Shin DH, Park YI, Hwang Y, et al. Role of rice cytosolic hexokinase OsHXK7 in sugar signaling and metabolism. J Integr Plant Biol. 2016;58:127– 135. https://doi.org/10.1111/jipb.12366
  • 81. Karve A, Moore BD. Function of Arabidopsis hexokinase-like1 as a negative regulator of plant growth. J Exp Bot. 2009;60:4137–4149. https://doi.org/10.1093/jxb/erp252
  • 82. Granot D, Schwartz RD, Kelly G. Hexose kinases and their role in sugar-sensing and plant development. Front Plant Sci. 2013;4:44. https://doi.org/10.3389/fpls.2013.00044
  • 83. Granot D, Kelly G, Stein O, David-Schwartz R. Substantial roles of hexokinase and fructokinase in the effects of sugars on plant physiology and development. J Exp Bot. 2014;65:809–819. https://doi.org/10.1093/jxb/ert400
  • 84. Geng MT, Yao Y, Wang YL, Wu XH, Sun C, Li RM, et al. Structure, expression, and functional analysis of the hexokinase gene family in cassava. Int J Mol Sci. 2017;18:1041. https://doi.org/10.3390/ijms18051041
  • 85. Hanson J, Smeekens S. Sugar perception and signaling – an update. Curr Opin Plant Biol. 2009;12:562–567. https://doi.org/10.1016/j.pbi.2009.07.014
  • 86. Grigston JC, Osuna D, Scheibe WR, Liu C, Stitt M, Jones AM. d-Glucose sensing by a plasma membrane regulator of G signaling protein, AtRGS1. FEBS Lett. 2008;582:3577–3584. http://doi.org/10.1016/j.febslet.2008.08.038
  • 87. Jaiswal DK, Werth EG, McConnell EW, Hicks LM, Jones AM. Time-dependent, glucose-regulated Arabidopsis regulator of G-protein signaling 1 network? Curr Plant Biol. 2016;5:25–35. https://doi.org/10.1016/j.cpb.2015.11.002
  • 88. Trusov Y, Botella JR. Plant G-proteins come of age: breaking the bond with animal models. Front Chem. 2016;4:24. https://doi.org/10.3389/fchem.2016.00024
  • 89. Ruan YL. Signaling role of sucrose metabolism in development. Mol Plant. 2012;5:763– 765. https://doi.org/10.1093/mp/sss046
  • 90. Wan H, Wu M,Yang Y, Zhou G, Ruan YL. Evolution of sucrose metabolism: the dichotomy of invertases and beyond. Trends Plant Sci. 2018;23:163–177. https://doi.org/10.1016/j.tplants.2017.11.001
  • 91. Tsai AY, Gazzarrini S. Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture. Front Plant Sci. 2014;5:119. https://doi.org/10.3389/fpls.2014.00119
  • 92. Yadav UP, Ivakov A, Feil R, Duan GY, Walther D, Giavalisco P, et al. The sucrose– trehalose 6-phosphate (Tre6P) nexus: specificity and mechanisms of sucrose signalling by Tre6P. J Exp Bot. 2014;65:1051–1068. http://doi.org/10.1093/jxb/ert457
  • 93. Griffiths CA, Sagar R, Geng Y, Primavesi LF, Patel MK, Passarelli MK, et al. Chemical intervention in plant sugar signalling increases yield and resilience. Nature. 2016;540:574–578. https://doi.org/10.1038/nature20591
  • 94. Bledsoe SW, Henry C, Griffiths CA, Paul MJ, Feil R, Lunn JE, et al. The role of Tre6P and SnRK1 in maize early kernel development and events leading to stress-induced kernel abortion. BMC Plant Biol. 2017;17:74. http://doi.org/10.1186/s12870-017-1018-2
  • 95. Jossier M, Bouly JP, Meimoun P, Arjmand A, Lessard P, Hawley S, et al. SnRK1 (SNF1- related kinase1) has a central role in sugar and ABA signalling in Arabidopsis thaliana. Plant J. 2009;59:316–328. https://doi.org/10.1111/j.1365-313X.2009.03871.x
  • 96. Bai J, Mao J, Yang H, Khan A, Fan A, Liu S, et al. Sucrose non-ferment 1 related protein kinase 2 (SnRK2) genes could mediate the stress responses in potato (Solanum tuberosum L.). BMC Genetics. 2017;18:41. https://doi.org/10.1186/s12863-017-0506-6
  • 97. Simon NM, Kusakina J, Fernández-López Á, Chembath A, Belbin FE, Dodd AN. The energy-signalling hub SnRK1 is important for sucrose-induced hypocotyl elongation. Plant Physiol. 2018;176:1299–1310. https://doi.org/10.1104/pp.17.01395
  • 98. Xiong Y, Sheen J. Novel links in the plant TOR kinase signaling network. Curr Opin Plant Biol. 2015;28:83–91. https://doi.org/10.1016/j.pbi.2015.09.006
  • 99. Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, et al. TOR signaling and nutrient sensing. Annu Rev Plant Biol. 2016;67:261–285. https://doi.org/10.1146/annurev-arplant-043014-114648
  • 100. Li X, Cai W, Liu Y, Li H, Fu L, Liu Z, et al. Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes. Proc Natl Acad Sci USA. 2017;114:2765–2770. https://doi.org/10.1073/pnas.1618782114
  • 101. Lee K, Seo PJ. Arabidopsis TOR signaling is essential for sugar-regulated callus formation. J Integr Plant Biol. 2017;59:742–746. https://doi.org/10.1111/jipb.12560
  • 102. Schepetilnikov M, Ryabova LA. Recent discoveries on the role of TOR (target of rapamycin) signaling in translation in plants. Plant Physiol. 2018;176:1095–1105. https://doi.org/10.1104/pp.17.01243
  • 103. Gupta A, Singh M, Laxmi A. Multiple interactions between glucose and brassinosteroid signal transduction pathways in Arabidopsis are uncovered by whole-genome transcriptional profiling. Plant Physiol. 2015;168:1091–1105. https://doi.org/10.1104/pp.15.00495
  • 104. Zhang Y, He J. Sugar-induced plant growth is dependent on brassinosteroids. Plant Signal Behav. 2015;10(12):e1082700. https://doi.org/10.1080/15592324.2015.1082700
  • 105. Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA. Functional roles of microRNAs in agronomically important plants – potential as targets for crop improvement and protection. Front Plant Sci. 2017;8:378. https://doi.org/10.3389/fpls.2017.00378
  • 106. Huang H, Long J, Zheng L, Li Y, Hu Y, Yu G, et al. Identification and characterization of microRNAs in maize endosperm response to exogenous sucrose using small RNA sequencing. Genomics. 2016;108:216–223. https://doi.org/10.1016/j.ygeno.2016.10.007

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-677fefe5-cc77-4ff6-b9a1-be45f8e53c61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.