PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 20 | 2 |

Tytuł artykułu

Nickel in the environment

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The importance of nickel (Ni) in the environment is an issue that is gaining broader recognition. While nickel is an element essential for plants, it is also a heavy metal. Nickel is a component of nine metalloenzymes, including urease, which participates in urea hydrolysis. It also helps some plants to protect themselves against pathogens and herbivorous insects. There are many sources of Ni in the environment, which can be a problem because at higher concentrations this element is toxic to plants and other living organisms. Therefore, standards have been defined for the Ni content in air, water, soil and plants. Its content is monitored in the air. More and more frequently, attention is paid to this element as an allergen in humans. In the world, attempts have been made to phytoextract nickel from contaminated soils using nickelphilous plants, the so-called hyperaccumulators, and even to recover the metal from these plants by so-called phytomining. On the other hand, nickel-containing fertilizers are marketed and used in cases of nickel deficiency in plants. In industry, this element is primarily used for the production of steel and alloys. The most recent application of nickel is related to graphene, which was invented 10 years ago. Although nickel contamination does not occur in Poland, we cannot rule out this risk in the future. Thus, it is important to monitor the fate of nickel in the environment.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

20

Numer

2

Opis fizyczny

p.525-534,ref.

Twórcy

autor
  • Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
autor
  • Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Lublin, Poland

Bibliografia

  • Ahmad M.S.A., Ashraf M. 2011. Essential roles and hazardous effects of nickel in plants. In: Rev. Environ. Contam. Toxicol. Whitacre (ed.), 214: 63-86. http://dx.doi.org/10.1007/978-1- 4614-0668-6_6
  • Brown P.H., Welch R.M., Cary E.E. 1987. Nickel a micronutrient essential for all higher plants. Plant Physiol., 85: 801-803. http://dx.doi.org/10.1104/pp.85.3.801
  • Cempel M., Nikel G. 2006. Nickel: A review of its sources and environmental toxicology. Pol. J. Environ. Stud., 15(3): 375-382.
  • Chaney R.L, Ang le J.S, Baker A.J.M, Li Y.M. 2004. Method for phytomining of nickel, cobalt, and other metals from soil. US patent 5,944,872.
  • Coogan T.P., Latta D.M., Snow E.T., Costa M. 1989. Toxicity and carcinogenicity of nickel compounds. In: Critical reviews in toxicology. McClellan R.O. (ed). Vol. 19. Boca Raton, FL: CRC Press; pp. 341-384. http://dx.doi.org/10.3109/10408448909029327
  • Długaszek M., Szopa M., Graczyk A. 2006. Content of heavy metals in Polish mineral and spring waters. J. Elementol., 1(3): 243-248. (in Polish)
  • Fones H., Davis C.A., Rico A., Fang F., Smith J.A., Preston G.M. 2010. Metal hyperaccumulation armors plants against disease. PLoS Pathog., 6(9): 1-13. http://dx.doi.org/10.1371/ journal.ppat.1001093
  • Gad N., El-Sherif M.H., El-Gereedly N.H.M. 2007. Influence of nickel on some physiological aspects of tomato plants. Aust. J. Basic Appl. Sci., 1(3): 286-293.
  • Gaillardet J., Viers J., Dupré B. 2003. Trace elements in river waters. In: Treatise on geochemistry. Holland H.D., Turekian K.K. (eds.) Elsevier, Oxford, 5: 225-272.
  • Gambuś F., Wieczorek J. 2012. Pollution of fertilizers with heavy metals. Ecol. Chem. Eng. A, 19(4-5): 353-360. DOI:10.2428/ecea.2012.19(04)036
  • Gawel J.E., Trick C.G., Morel F.M.M. 2001. Phytochelatins are bioindicators of atmospheric metal exposure via direct foliar uptake in trees near Sudbury, Ontario, Canada. Environ. Sci. Technol., 35(10): 2108-2113. DOI:10.1021/es0016250
  • Grison C., Escande V., Petit E., Garoux L., Boulanger C., Grison C. 2013. Psychotria douarrei and Geissois pruinosa, novel resources for the plant-based catalytic chemistry. RSC Adv., 44(3): 22340-22345. DOI: 10.1039/C3RA43995J
  • Haber L.T., Erdreicht L., Diamond G.L., Maier A.M., Ratney R., Zhao Q., Dourson M.L. 2000. Hazard identification and dose response of inhaled nickel-soluble salts. Regul. Toxicol. Pharmacol., 31(2): 210-230. DOI:10.1006/rtph.2000.1377
  • Jhee E.M., Boyd R.S., Eubanks M.D. 2005. Nickel hyperaccumulation as an elemental defense of Streptanthus polygaloides (Brassicaceae): influence of herbivore feeding mode. New Phytol., 168(2): 331-344. DOI:10.1111/j.1469-8137.2005.01504.x
  • Kabata-Pendias A. 2001. Trace elements in soils and plants. 3rd edn, CRC, Boca Raton, pp. 1–448.
  • Kabata-Pendias A., Szteke B. 2012. Trace elements in geo- and biosphere. IUNG-PIB Puławy, 269 pp. (in Polish)
  • Khodadoust AP ., Redd y KR ., Maturi K. 2004. Removal of nickel and phenanthrene from kaolin soil using different extractants. Environ. Eng. Sci., 21(6): 691-704. http://dx.doi.org/10.1089/ees.2004.21.691
  • Kocjan R., Kot A., Ptasiński H. 2002a. Assessment of the content of chromium, zinc, copper, nickel, cadmium, and lead in the drinking water of the Stalowa Wola region. Bromat. Chem. Toksykol., 35(2): 133-137. (in Polish)
  • Kocjan R., Kot A., Ptasiński H. 2002b. Chromium, zinc, copper, nickel, cadmium, and lead in the soil of the Stalowa Wola region. Bromat. Chem. Toksykol., 35(2): 127-131. (in Polish)
  • Kutman B.Y., Kutman U.B., Cakman I. 2013a. Foliar nickel application alleviates detrimental effects of glyphosate drift on yield and seed quality of wheat. J. Agric. Food Chem., 61: 8364-8372. http://dx.doi.org/10.1021/jf402194v
  • Kutman B.Y., Kutman U.B., Cakman I. 2013b. Nickel-enriched seed and externally supplied nickel improve growth and alleviate foliar urea damage in soybean. Plant Soil, 363: 61-75. DOI 10.1007/s11104-012-1284-6
  • Łodyga-Chruścińska E., Sykuła-Zając A., Olejnik D. 2012. Determination of nickel in Polish brands of margarines. Food Addit. Contam. Port. B: Surveillance, 5(4): 251-254. http://dx.doi.org/10.1080/19393210.2012.702287
  • Łukowski A., Wiater J. 2009. The influence of mineral fertilization on heavy metal fraction contents in soil. Part II. Copper and nickel. Pol. J. Environ. Stud., 18(4) 645-650.
  • Matraszek R., Hawrylak-Nowak B. 2010. Growth and mineral composition of nickel-stressed plants under conditions of supplementation with excessive amounts of calcium and iron. J. Toxicol. Env. Healt, A, 73(17-18): 1260-1273. DOI: 10.1080/15287394.2010.492015
  • Molas J.S. 2010. The uptake of nickel by cabbage plants (Brassica oleracea L.) and its phytotoxicity in relation to the chemical form applied to the substrate. Rozpr. Nauk. Uniw. Przyr. w Lublinie, 341: 142 pp.
  • Molas J.S, Baran S. 2004. Relationship between the chemical form of nickel applied to the soil and its uptake and toxicity to barley plants (Hordeum vulgare L.). Geoderma, 122(2-4): 247-255. http://dx.doi.org/10.1016/j.geoderma.2004.01.011
  • Mulrooney S.B., Hausinger R.P. 2003. Nickel uptake and utilization by microorganisms, F.E.M.S. Microbiol. Rev., 27(2-3): 239-261. http://dx.doi.org/ 10.1016/S0168-6445(03)00042-1
  • Nieminen T.M., Ukonmaanaho L., Rausch N., Shotyk W. 2007. Biogeochemistry of nickel and its release into the environment. Met. Ions Life Sci., 2: 1-30. http://dx.doi.org/10.1002/9780470028131.ch1
  • Oller A.R., Costa M., Oberdrster G. 1997. Carcinogenicity assessment of selected nickel compounds. Toxicol. Appl. Pharmacol., 143(1):152-166. DOI:10.1006/taap.1996.8075
  • Pacyna J.M., Pacyna E.G. 2001. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev., 9(4): 269-298. DOI:10.1139/a01-012
  • Rich ter R.O., Theis T.L. 1980. Nickel speciation in a soil/water system. In: Nickel in the environment. Nriagu J.O. (ed.), New York, John Wiley and Sons, Inc., 189-202.
  • Salt D.E., Blaylock M., Kumar Pban, Dushenkov V., Ensley B.D., Chet I., Raskin I. 1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13(5): 468-474. http://dx.doi.org/ 10.1038/nbt0595-468 Scott-Fordsmand J.J. 1997. Toxicity of nickel to soil organisms in Denmark. Rev. Environ. Contam. Toxicol., 148: 1-34.
  • Seregin I.V., Kozhevnikova A.D. 2006. Physiological role of nickel and its toxic effects on higher plants. Russ. J. Plant Physiol., 53(2): 257-277. http://dx.doi.org/ 10.1134/S1021443706020178
  • Sharma A.D. 2013. Low nickel diet in dermatology. Ind. J. Dermatol., 58(3): 240. http://dx.doi.org/10.4103/0019-5154.110846
  • Siebielec G., Smreczak B., Klimkowicz-Pawlas A., Maliszewska-Kordybach B., Terelak H. 2012. Arable soil chemistry monitoring in Poland in 2010-2012. IUNG-PIB Puławy, 202 pp. (in Polish) http://www.gios.gov.pl/zalaczniki/artykuly/Monitoring_sprawozd_koncowe2.pdf
  • Sirko A., Brodzik R. 2000. Plant ureases. Roles and regulation. Acta Biochim. Pol., 47(4): 1189-1195.
  • Smith S.R. 1994. Effect of soil pH on availability to crops of metals in sewage sludge-treated soils. I. Nickel, copper and zinc uptake and toxicity to ryegrass. Environ Pollut., 85(3):321-327. http://dx.doi.org/10.1016/0269-7491(94)90054-X
  • State Environmental Monitoring 2012. Assessment of air quality in zones in the year 2012. http://powietrze.gios.gov.pl/ gios/site/documents/download /101080 (in Polish)
  • Szefer P. 2002. Metals, metalloids and radionuclides in the Baltic Sea Ecosystem. Elsevier, Amsterdam, 766 pp.
  • Tappero R., Peltier E., Grafe M., Heidel K., Ginder-Vogel M., Livi K., Rivers M., Marcus M., Chaney R., Sparks D. 2007. Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytologist, 175(4): 641-654. http://dx. doi.org/10.1111/j.1469-8137.2007.02134.x
  • Terelak H, Motowicka-Terelak T. 2000. The heavy metals and sulphur status of agricultural soils in Poland. In: Soil quality, sustainable agriculture and environmental security in Central and Eastern Europe. Wilson, Maliszewska-Kordybach (Eds.). NATO Science Series, 69: 37-47. http://dx.doi.org/10.1007/978-94-011-4181-9_3
  • Trafas M., Eckes T., Gołda T. 2006. Local variation in the content of heavy metals in soils in Olkusz region. Inż. Środ, 11(2): 127-144. (in Polish)
  • Varma S., Sarode D., Wakale S, Bhanvase B.A, Deosarkar M.P. 2013. Removal of nickel from waste water using graphene nanocomposite. IJCPS Vol. 2, Special Issue. http://www.ijcps.org/SP1/P14.pdf
  • Weng L.P., Wolthoorn A., Lexmond T.M., Temminghoff E.J, Van Riemsdijk W.H. 2004. Understanding the effects of soil characteristics on phytotoxicity and bioavailability of nickel using speciation models. Environ. Sci. Technol., 38(1):156-162. http://dx.doi.org/10.1021/ es030053r
  • Wolfram L., Friedrich B., Eiting er T. 1995. The alcaligenes eutrophus protein HoxN mediates nickel transport in Escherichia coli. J. Bacteriol., 177: 1840-1843.
  • Wood B.W. 2010. Nickel deficiency symptoms are influenced by foliar Zn:Ni Or Cu:Ni concentration ratio. Acta Hort. (ISHS), 868:163-170
  • Wood B.W, Reilly C.C. 2007. Interaction of nickel and plant disease. In: Mineral nutrition and plant disease. (Eds.): L.E. Datnoff , W.H. Elmer, D.M. Huber. Minneapolis, MN, Am. Phytopatholog. Soc. Press. pp. 217-247.
  • Wood B.W, Reilly C.C., Nyczepir A.P. 2004. Mouse-ear of pecan: A nickel deficiency. HortSci., 39(6): 1238-1242.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-674ff535-9f8a-4e06-8daa-091fdf4aee02
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.