PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | 74 | 4 |

Tytuł artykułu

Effects of genistein supplemented before or after irradiation on DNA injury in human lymphocytes in vitro

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background. Ionizing radiation (IR) carry adequate energy to ionize or remove electrons from an atom. Particles interact with water to produce reactive oxygen species (ROS). Genistein (GEN) is a naturally occurring phytoestrogen and the basic isoflavonoid in soybeans and soybean-enriched products and is believed to have the strongest antioxidant activity. Objective. The study aimed at the investigation if application of GEN at different time prior or past irradiation may ameliorate or reduce injury of DNA in human lymphocytes. Material and Methods. The isolated lymphocytes were exposed to X-irradiation (0.5; 1 Gy). GEN (1 μM/ml; 10 μM/ ml) was appended to attempts at various times prior or past irradiation (1 h prior, immediately prior, immediately past, 1 h past). We joined each X-rays dose with each GEN dose. After 1h of incubation DNA damages were examined using Comet assay. Results. Combination of 1 μM/ml of GEN given 1 h before irradiation with low or high dose markedly decreased induced by irradiation DNA injury. Higher dose of GEN applied immediately before or after irradiation markedly extended the frequency of DNA injury generated by irradiation. The result of application 1 μM/ml GEN 1 h after irradiation was not significantly different compared to control. The effect of 1 Gy + 10 μM/ml GEN was not significantly lower compared to each agent alone. Conclusions. Only a very low concentration of GEN applied before irradiation, may be considered as a potential radiomitigator/radioprotector. High doses of GEN work as a radiosentitizer and may potent the effects of radiotherapy.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

74

Numer

4

Opis fizyczny

p.439-446,fig.,ref.

Twórcy

  • Department of Radiation Hygiene and Radiobiology, National Institute of Public Health - National Institute of Hygiene, 24 Chocimska Street, 00-791 Warsaw, Poland
autor
  • Department of Radiation Hygiene and Radiobiology, National Institute of Public Health - National Institute of Hygiene, 24 Chocimska Street, 00-791 Warsaw, Poland

Bibliografia

  • 1. Akiyama T., Ishida J., Nakagawa S., et al.: Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 1987;262(12):5592-5.
  • 2. Anderson D., Dobrzyńska M.M., Basaran N.: Effect of various genotoxins and reproductive toxins in human lymphocytes and sperm in the comet assay. Teratogen Mutagen Carcinogen 1997;17:29-43.
  • 3. Barcellos-Hoff M.H., Park C., Wright E.G.: Radiation and the microenvironment-tumorigenesis and therapy. Nat Rev Cancer 2005;5(11):967-75.
  • 4. Barnes S. and Peterson G.: Biochemical Targets of the Isoflavone Genistein in Tumor Cell Lines Exp Biol Med 1995;200:1.
  • 5. Bhamre S., Sahoo D., Tibshirani R., Brooks J.D.: Gene expression changes induced by genistein in the prostate cancer cell line LNCaP. Open Prostate Cancer J 2010;3:86–98.
  • 6. Boué S.M., Wiese T.E., Nehls S., et al.: Evaluation of the Estrogenic Effects of Legume Extracts Containing Phytoestrogens. J Agricul Food Chem. 2003;51(8):2193–2199.
  • 7. Cantanhêde L.F., Almeida L.P., Soares R.E., Castelo Branco P.V., Pereira S.R.: Soy isoflavones have antimutagenic activity on DNA damage induced by the antileishmanial Glucantime (meglumine antimoniate). Drug Chem Toxicol 2015;38:312–317.
  • 8. Casanova M., You L., Gaido K., Archibeque-Engle S., Janzen D.B., Heck H.A.: Developmental effects of dietary phytoestrogens in Sprague–Dawley rats and interactions of genistein and daidzein with rat estrogen receptors alpha and beta in vitro. Toxicol Sci 1999;51:236–244.
  • 9. Cirin D., Cotrim A.P., Hyodo F., Baum B.J., Krishna M.C., Mitchell J.B.: Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist 2010;15:360-71.
  • 10. Desoky O., Ding N., Zhou G.: Targeted and nontargeted effects of ionizing radiation. J Radiat Res Appl Sci 2015;8:247-54.
  • 11. Ding W., Liu Y.: Genistein attenuates genioglossus muscle fatigue under chronic intermittent hypoxia by down-regulation of oxidative stress level and upregulation of antioxidant enzyme activity through ERK1/2 signalling pathway. Oral Dis 2011;17:677–684.
  • 12. Di Virgilio A.L., Iwami K., Watjen W., Kahl R., Degen G.H.: Genotoxicity of the isoflavones genistein, daidzein and equal in V79 cells. Toxicol Lett 2004;151:151-162.
  • 13. Elmore E., Lao X.-Y., Kapadia R., Redpath L.H.: The effect of dose rate on radiation induced neoplastic transformation in vitro by low doses of low-LET radiation. Radiat Res 2006;66:832-38.
  • 14. Forman H.J., Torres M.: Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Resp Crit Care Med 2002;166:4-8.
  • 15. Haddad Y.H., Said R.S., Kamel R., El Morsy E.M., Demerdash, E.: Phytoestogen genistein hinders ovarian oxidative damage and apoptotic cells death-induced by ionizing radiation: co-operative role of ER-β, TGF-β, and FOXL-2. Sci Rep 2020;10:13551.
  • 16. Hillman G.G.: Soy isoflavones protect normal tissue while enhancing radiation response. Semin Radiat Oncol 2018;29:62-71.
  • 17. Iovine B., Iannella M.L., Gasparri F., Giannini V., Monfrecola G., and Bevilacqua M.A.: A Comparative Analysis of the Photo-Protective Effects of Soy Isoflavones in their Aglycone and Glucoside Forms. Int J Mol Sci 2012;13:16444-16456.
  • 18. Kim S.K., Lindner V., Karas R.H., Kuiper G.G.J.M., Gustafsson J.-Å., Mendelssohn M.E.: Expression of estrogen receptor b mRNA in normal and injured blond vessels. Circulat Res 1998;83:224–229.
  • 19. Knight D.C. and Eden J.A.: A review of the clinical effects of phytoesytogens. Obstet Gynecol 1996;87 897-904.
  • 20. Końca K., Lankoff A., Banasik A., et al.: Cross-platform public domain PC image-analysis program for comet assay. Mutat Res 2003;534:15-20.
  • 21. Kuiper G.G., Carlsson B., Grandien K., Enmark E., Häggblad J., Nilsson S., Gustafsson J.A.: Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinol 1997;138(3):863-70.
  • 22. Kuiper G.G.J.M., Lemmen J.G., Carlsson B., et al.: Interaction of Estrogenic Chemicals and Phytoestrogens with Estrogen Receptor β. Endocrinol 1998;139(10):4252–63.
  • 23. Lachumy S.J., Oon C.E., Deivanai S., et al.: Herbal remedies for combating irradiation: a green antiirradiation approach. Asian Pacif J Cancer Prevent 2013;14:5553-5565.
  • 24. Landauer M.R.,.D., Harvey A.J., Kayton M., Day R.M.: Mechanism and therapeutic window of genistein nanosuspension to protect against hematopoietic – acute radiation syndrome. J Radiat Res 2019;60(3):308-17.
  • 25. LaVerne J.A.: OH radicals and oxidizing products in the gamma radiolysis of water. Radiat Res 2000;153(2):196-200.
  • 26. Messina M.J.: Soy foods and soybean isoflavones and menopausal health. Nutr Clin Care 2002; 5(6): 272-82.
  • 27. Nadal-Serrano M., Pons D.G., Sastre-Serra J., Blanquer-Rosselló M.M., Roca P., Oliver J.: Genistein modulates oxidative stress in breast cancer cell lines according to ER/ER ratio: Effects on mitochondrial functionality, sirtuins, uncoupling protein 2 and antioxidant enzymes. Internat J Biochem Cell Biol 2013;45:2045–2051.
  • 28. Nambiar D., Rajamani P., Singh R.P.: Effects of phytochemicals on ionization radiation-mediated carcinogenesis and cancer therapy. Mutat Res 2011;728(3):139-56.
  • 29. Neijenhuis S., Verwijs-Janssen M., Kasten-Pisula U.: Mechanism of cell killing after ionizing radiation by a dominant negative DNA polymerase beta. DNA Repair 2009; 8:236-46.
  • 30. Niwa A.M., Oliveira R.J., and Mantovani M.S.: Evaluation of the mutagenicity and antimutagenicity of soy phytoestrogens using micronucleus and comet assays of the peripheral blood of mice. Genet Mol Res 2013;12 (1):519-527.
  • 31. Park C.E., Yun H., Lee E.B., et al.: The antioxidant effects of genistein are associated with AMP-activated protein kinase activation and PTEN induction in prostate cancer cells. J Med Food 2010;13:815–820.
  • 32. Pham-Huy L.A., He H., Pham-Huy C.: Free radicals, antioxidants in disease and health. Internat J Biomed Sci 2008;4:89-96.
  • 33. Raschke M., Rowland I.R., Magee PJ., Pool-Zobel B.L.: Genistein protects prostate cells against hydrogen peroxide-induced DNA damage and induces expression of genes involved in the defence against oxidative stress. Carcinogenesis 2006;27:2322–2330.
  • 34. Riley P.A.: Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 1994;65:27-33.
  • 35. Russo M., Russo G.L., Daglia M., et al.: Understanding genistein in cancer: the “good” and the “bad” effects: A review. Food Chem 2016;196:589–600.
  • 36. Sarkar F.H. and Li Y.: Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metast Rev 2002;2:265-280.
  • 37. Shukla S.K., Gupta M.: Approach towards development of a radioprotector using herbal source against lethal irradiation. Int Res J Plant Sci 2010;1:118-125.
  • 38. Singh N.P., Mc Coy M.T., Twice R.R., Schneider E.L.: A simple technique for quantization of low level of DNA damage in individual cells. Exp Cell Res 1988; 175:184-191.
  • 39. Song L., Ma L., Cong F., et al.: Radioprotective effect of genistein on HL-7702 cell via the inhibition of apoptosis and DNA damage. Canc Lett 2015;366:100–111.
  • 40. Sowa M., Arthurs J., Estes B.J., Morgan W.F.: Effects of ionizing radiation on cellular structure, induced instability and carcinogenesis. EXS 2006;96:293-301.
  • 41. Suit H., Goldberg S., Niemiecko A., et al.: Secondary carcinogenesis in patients related with radiation: a review of data on radiation-induced cancers in human, non-human primate, canine and rodent subjects. Radiat Res 2007;167:12-42.
  • 42. Sutherland M., Bennett P.V., Sidorkina O., Laval J.: Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation. Proceed Nat Acad Sci USA 2000;97:103-108.
  • 43. Suzuki K., Koike, H., Matsui, H., et al.: Genistein, a soy isoflavone, induces glutathione peroxidase in the human prostate cancer cell lines LNCaP and PC-3. Int J Cancer 2002;99:846–852.
  • 44. Tremellen K.: Oxidative stress and male infertility - a clinical perspective. Human Reprod Update 2008; 14: 243–58. 20. UNSCEAR. Sources of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. Report of General Assembly with annexes. New York, United Nations. 2008.
  • 45. UNSCEAR. Sources of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. Report of General Assembly with annexes. New York, United Nations. 2008.
  • 46. Uslu G.H., Canyilmaz E., Serdar L., Ersoz S.: Protective effects of genistein and melatonin on mouse liver injury induced by whole-body ionizing radiation. Mol Clin Oncol 2019;10:261-6.
  • 47. Ward J.F.: DNA damage produced by ionizing radiation in mammalian cells: identities, mechanism and formation, and repair ability. Progr Nucl Acid Res Mol Biol 1988;35:95-125, doi: 10.1016/s0079-6603(08)60611-x.
  • 48. Ward JF.: Radiation mutagenesis: the initial DNA lesions responsible. Radiat Res 1995;142:362-368.
  • 49. Wu W.S.: The signalling mechanism of ROS in tumor progression. Canc Metast Rev 2006;25: 695-705, doi: 10.1007/s10555-006-9037-8.
  • 50. Zhang Z., Wang C.Z., Du G.J.: Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cell. Int J Oncol 2013;43:289–296, DOI: 10.3892/ijo.2013.1946.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-67162d46-23d1-4b9a-b814-a55140a2b243
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.